arginine deprivation
Recently Published Documents


TOTAL DOCUMENTS

149
(FIVE YEARS 35)

H-INDEX

24
(FIVE YEARS 3)

Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4503
Author(s):  
Andreia Matos ◽  
Marcos Carvalho ◽  
Manuel Bicho ◽  
Ricardo Ribeiro

Arginine availability and activation of arginine-related pathways at cancer sites have profound effects on the tumor microenvironment, far beyond their well-known role in the hepatic urea cycle. Arginine metabolism impacts not only malignant cells but also the surrounding immune cells behavior, modulating growth, survival, and immunosurveillance mechanisms, either through an arginase-mediated effect on polyamines and proline synthesis, or by the arginine/nitric oxide pathway in tumor cells, antitumor T-cells, myeloid-derived suppressor cells, and macrophages. This review presents evidence concerning the impact of arginine metabolism and arginase activity in the prostate cancer microenvironment, highlighting the recent advances in immunotherapy, which might be relevant for prostate cancer. Even though further research is required, arginine deprivation may represent a novel antimetabolite strategy for the treatment of arginine-dependent prostate cancer.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4497-4497
Author(s):  
Fabrizio Puglisi ◽  
Antonella Padella ◽  
Nunziatina Laura Parrinello ◽  
Grazia Scandura ◽  
Daniela Cambria ◽  
...  

Abstract Background In Hodgkin Lymphoma (HL), neoplastic cells orchestrate an inflammatory microenvironment leading to sterile inflammation, T-cell anergy, and immune deficiency. Our group showed that in HL patients the aminoacid degrading enzyme Arginase-1 is increased, associated with poor outcome, and leads to arginine (Arg) deprivation. However, how the reduction of Arg in the extracellular milieu of the tumor microenvironment can contribute to neoplastic cell fitness is largely unknown. Aims To detect the adaptive response (via evaluation of global transcriptome and metabolome changes) in human HL cell lines exposed to Arg deprivation. Methods To better understand the impact of extra-cellular Arg1 deprivation on the metabolome of human cHL cells, four human cHL cell lines (L428, L540, HDMYZ and KM-H2) were individually cultured with customized complete media or lacking or Arg (R0), supplemented with 10% dialyzed fetal bovine serum, in six independent experiments. After 48 hours of culture, the cells were collected for global metabolomic analysis, by gas chromatography-mass spectrometry (GC/MS) and liquid chromatography-tandem mass spectrometry (LC/MS/MS) platforms by Metabolon Inc and transcriptome profiling by Illumina platform. Following normalization to DNA concentration, log transformation, and imputation of missing values, if any, with the minimum observed value for each compound, Welch's two-sample t-test was used to identify biochemicals that differed significantly between experimental groups. Results While Arg deprivation did not affect cell viability but delayed cell cycle due to arrest in G2 phase in all tested cell lines, the effect of Arg deficiency on the cellular metabolome depended largely on the cell type examined with L428 and KMH2 cells having significantly changed metabolomes. Pyruvate was significantly higher in the KMH2 cells deprived of Arg compared to controls. Conversely, lactate was significantly lower, with increased levels of long-chain saturated fatty acids and long-chain polyunsaturated fatty acids (PUFAs). Taken together the metabolomics changes suggested that specific-amino acid deficiency can lead to an increase in free fatty acids synthases to preserve cytoplasmatic and mitochondrial membrane dynamics. Consistent with a metabolic rewiring to maintain mitochondrial integrity (the pyruvate is an important intermediary in the conversion of carbohydrates into fatty acids), the adaptive response was associated to increased oxidative stress, as suggested by of reduced glutathione in KMH2 cells, depletion of gamma-glutamylcysteine, increased cystine, the oxidative product of cysteine, and methionine sulfoxide (an oxidation product of methionine). Gene set enrichment analysis (GSEA) showed deep transcriptome rearrangements in KMH2 and HDMYZ cell lines, involving upregulation of genes required for the unfolded protein response (UPR, including XBP1, EIF2S1, EIF4A2, EIF4A3, ATF3, ATF4, DDIT4, EDEM1, GADD45B, SQSTM1, HMOX), NF-kB response to TNF (including RAF1, TNF, LIF, NKBIA, SGK1, BIRC3, ICAM1, BCL6, IL6, RELA, CDKN1A), p53 pathway and networks (including CDKN2B, STOM, TRAF4, RRAD, SESN1, FOXO3, SERPINB5, JAG2) and proteosome degradation (HSPA4, PSMD11, PSMD13, PSMD2, PSMA5, PSMA7, PSMC4), with a minimal effect on metabolism features, except the upregulation of genes involved in lactate generation and degradation. All lines tested showed down-regulation of CCNI2, LCROL, MKI67, NCAPG, PEX10 and UFSP2, suggesting that early response to arginine deprivation includes modulation of UFMylation pathway, the most recently discovered post-translational protein modification system, whose biological function is largely unknown. Conclusions The removal of Arg from L428 and KMH2 resulted in changes in the specific-amino acid-related metabolites. The adaptive response to Arg-depleted environment increases oxidative stress and promotes a shift in glucose use in the attempt to preserve mitochondrial function. The cell-cycle arrest in G2, the increase of pyruvate availability and the upregulation of proteasome function via upregulation of the UFMylation pathway suggest the dependency of HL cell lines on mitochondrial function integrity. Quantity and function of mitochondria network can play a major role in selecting the fittest clones, a metabolic pathway that should be explored as novel non -synthetic lethal targets. Disclosures Martinelli: Stemline Therapeutics: Consultancy; Roche: Consultancy; Astellas: Consultancy, Speakers Bureau; Daichii Sankyo: Consultancy; Pfizer: Consultancy, Speakers Bureau; Incyte: Consultancy; Abbvie: Consultancy; Celgene /BMS: Consultancy, Speakers Bureau; Jazz Pharmaceuticals: Consultancy. Di Raimondo: Pfizer: Honoraria; Jazz Pharmaceutical: Honoraria; Amgen: Honoraria; AbbVie: Honoraria; Bristol Myers Squibb: Honoraria; Janssen Pharmaceuticals: Honoraria.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2787-2787
Author(s):  
Michael J Austin ◽  
Leena Halim ◽  
Farideh Miraki-Moud ◽  
David Taussig ◽  
John Bomalaski ◽  
...  

Abstract Background Chimeric antigen receptor (CAR)-T cell therapy has revolutionised the treatment of relapsed or refractory B-ALL in children and young adults with unprecedented response rates. However, primary resistance and relapse are unresolved challenges that limit long term benefit in a significant proportion of patients. Death receptor mediated extrinsic apoptosis is a key component of CAR-T cytotoxicity and impairment of this system, of which CAR-T derived TRAIL (tumour necrosis factor related apoptosis inducing ligand) is a key initiator, is a principal driver of primary resistance. Arginine deprivation with the therapeutic enzyme ADI-PEG20 (pegylated arginine deiminase) sensitises cancers deficient in the enzyme argininosuccinate synthase (ASS1) to the apoptosis initiating activity of TRAIL through tumour cell surface upregulation of death receptors DR4 and DR5. Whether this effect could potentiate the TRAIL-DR activity in CAR-T therapy has not been explored. Aim We tested the hypothesis that ADI-PEG20 treatment can sensitise susceptible B-ALL to anti-CD19 CAR-T through priming of death receptor mediated apoptosis signalling. Methods The effect of ADI-PEG20 on cell survival and death receptor expression in B-ALL cell lines and primary samples was analysed by flow cytometry. Second generation anti-CD19 CAR-T cells with a CD28 costimulatory domain were generated by retroviral transduction of activated peripheral blood mononuclear cells (PBMC) from healthy donors. For CAR-T co-culture experiments, B-ALL cell lines were pre-treated with ADI-PEG20 before washing and re-suspending in arginine replete media prior to CAR-T cell addition. Results To establish potential susceptibility of B-ALL to ADI-PEG20 we measured expression of ASS1, which inversely correlates with sensitivity to the drug, using combined in situ immunohistochemistry (n=6) and RT-qPCR (n=7). ASS1 deficiency was consistently seen in this series of primary samples suggesting the potential utility of ADI-PEG20 in B-ALL, with comparable expression levels to those seen in a cohort of primary AML samples proven to be sensitive to the drug (figure 1a). Next, to examine variation in ASS1 expression between genetically defined subtypes of B-ALL we re-analysed transcriptome data from a cohort of 215 patients treated on the ECOG E2993 trial, filtered into a network of 58 genes generated according to known or predicted interaction with ASS1. We found an enrichment of Philadelphia chromosome positive (Ph+) and Philadelphia-like (Ph-L) samples in the cluster characterised by lowest ASS1 expression along with high HIF1A expression, matching a recurrent pattern reported in other ADI-PEG20 sensitive tumours. This therefore predicts that among B-ALL subtypes, Ph+ and Ph-L are likely to be most sensitive to therapeutic arginine deprivation. We then functionally confirmed, using in vitro cell line (n=3) and in vivo patient derived xenograft models of B-ALL (n=2), that ASS1 deficiency is required for ADI-PEG20 sensitivity. Using the ASS1-low, Ph-L cell line MUTZ-5, we established that ADI-PEG20 induced apoptosis accompanies cell surface upregulation of both DR4 and DR5 expression. Upregulation of DR4 was observed to follow an upwards trend after treated cells were washed and re-suspended in arginine replete media, suggesting that transient arginine starvation can commit ASS1-low B-ALL to a state of apoptotic priming (figure 1b). With confirmed engagement of arginine starvation and death receptor upregulation we tested the synergy potential of ADI-PEG20 pre-treatment of MUTZ-5 followed by CAR-T, utilising calculated combination drug indices (CDIs). Across independent PBMC donors (n=3) we observed greater potency killing of CD19 + leukaemia cells in the combination treated co-cultures when compared to the single agent treated conditions, with CDIs consistently less than 1 confirming a synergistic effect (figure 1c). Conclusion Our study proposes a synergistic interaction between the arginine depleting enzyme ADI-PEG20 and anti-CD19 CAR-T for the treatment of ASS1 deficient B-ALL, whereby priming of death receptor signalling may underlie enhanced CAR-T cytotoxicity against CD19 + tumour cells. These data support an emerging framework for CAR-T optimisation based on targeting of the death receptor mediated extrinsic apoptosis pathway and can inform future refinements in the development of cellular immunotherapy. Figure 1 Figure 1. Disclosures Bomalaski: Polaris Pharmaceuticals Inc.: Current Employment. Maher: Leucid Bio: Other: Chief Scientific Officer. Gribben: Abbvie: Honoraria; AZ: Honoraria, Research Funding; BMS: Honoraria; Gilead/Kite: Honoraria; Janssen: Honoraria, Research Funding; Morphosys: Honoraria; Novartis: Honoraria; Takeda: Honoraria; TG Therapeutis: Honoraria.


2021 ◽  
Vol 23 (Supplement_4) ◽  
pp. iv24-iv24
Author(s):  
Aithne Atkinson ◽  
Nelofer Syed

Abstract Aims The development of melanoma brain metastasis (MBM) occurs in ~50% of metastatic melanoma cases, and significantly worsens prognosis to a median survival of 12.8 months. Melanoma is often reported as an arginine auxotroph due to transcriptional silencing of argininosuccinate synthase 1 (ASS1). Arginine deiminase (ADI) is a non-mammalian enzyme which depletes blood arginine by converting it to citrulline and ammonia, and in its pegylated form ADI shows clinical efficacy in the treatment of a number of cancers via exploiting tumour arginine auxotrophy, resulting in targeted arginine deprivation of tumour cells. While cutaneous melanoma is the prototype cancer for this therapy, studies to date have excluded central nervous system metastasis. We have demonstrated that patient derived primary MBM models are sensitive to arginine deprivation in vitro, confirmed suitable clinical biomarkers of sensitivity, and established the mechanism of tumour cell specific cytotoxicity. Method Patient derived primary cultures of MBM were established and subject to treatment with arginine deprivation. Gene expression and methylation analysis was examined by RT-qPCR, western blot, Illumina mRNA sequencing and Illumina methylated DNA immunoprecipitation-sequencing (MeDIP-seq) on ADI treated and untreated samples. Cell death, cytotoxicity induction and caspase-3 and-7 recruitment was analysed using an Incucyte S3 live-cell imager, by fluorescently labelling cells with Incucyte Cytolight Red Rapid dye, Cytotox Green dye and Caspase-3/7 Green dye, and imaging cells every 2 hours over the course of 2 weeks. 3D spheroid growth and invasion was measured by culturing cells as tumour spheroids before treating with ADI, and imaging spheroids every 2 hours for 2 weeks using an Incucyte S3 live-cell imager. Nuclear leakage and mitochondrial morphology was observed by fluorescently staining treated and untreated cells with DAPI and MitoTracker Red, and imaging on a Leica DMi8 confocal microscope. Results Primary MBMs differentially express ASS1 at substantially lower levels than non-cancerous melanocytes, however some models are capable of upregulating ASS1 following confrontation with arginine deprivation. Despite this, long-term sensitivity of primary MBMs to arginine deprivation was observed in both 2D and 3D models. In addition, arginine deprivation was seen to inhibit MBM invasion in a 3D model – an important feature in MBM pathogenesis. Initially, autophagy was induced in arginine deprived MBM, however in all models the induction of cytotoxicity correlated with recruitment of caspase-3 and -7, and intrinsic apoptotic cell death confirmed. Nuclear leakage, and eventually complete nuclear destruction was observed, in addition to mitochondrial fragmentation. Conclusion Arginine deprivation is highly effective in reducing 2D and 3D MBM growth, as well as limiting invasion. While apoptotic cell death was observed in all models, the initial induction of autophagy could pose threat of resistance development in a clinical setting, and so combinational therapies with autophagic inhibitors and/or additional apoptotic inducers should be investigated. It is unclear whether nuclear leakage and mitochondrial degradation are the cause or product of apoptosis. Considering the strong clinical evidence for the use of arginine deprivation in non-CNS metastatic melanoma and the results of this study, arginine deprivation is a highly suitable treatment for pre-surgical MBM to limit invasion and increase resection, and for post-surgical continuation.


Animals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2756
Author(s):  
Roberta Saleri ◽  
Paolo Borghetti ◽  
Francesca Ravanetti ◽  
Melania Andrani ◽  
Valeria Cavalli ◽  
...  

Arginine is a semi-essential amino acid, supplementation with which induces a reduction of intestinal damage and an improvement of intestinal immunity in weaned piglets, but the mechanism is not yet entirely clear. The aim of this study was to characterise a co-culture model by measuring changes in gene expression over time (24 and 48 h) in intestinal IPEC-J2 cells in the presence of immune cells activated with phytohemagglutinin and, consequently, to assess the effectiveness of arginine deprivation or supplementation in modulating the expression of certain cytokines related to the regulation of intestinal cells’ function. The main results show the crucial role of arginine in the viability/proliferation of intestinal cells evaluated by an MTT assay, and in the positive regulation of the expression of pro-inflammatory (TNF-α, IL-1α, IL-6, IL-8) and anti-inflammatory (TGF-β) cytokines. This experimental model could be important for analysing and clarifying the role of nutritional conditions in intestinal immune cells’ functionality and reactivity in pigs as well as the mechanisms of the intestinal defence system. Among the potential applications of our in vitro model of interaction between IEC and the immune system there is the possibility of studying the effect of feed additives to improve animal health and production.


2021 ◽  
Author(s):  
Evanka Madan ◽  
Madhu Puri ◽  
Rohini Muthuswami ◽  
Dan Zilberstein ◽  
Rentala Madhubala

AbstractExtensive interaction between the host and pathogen metabolic networks decidedly shapes the outcome of infection. Infection with Leishmania donovani, an intracellular protozoan parasite, leads to a competition for arginine between the host and the parasite. L. donovani transports arginine via a high-affinity transporter LdAAP3, encoded by the two genes LdAAP3.1 and LdAAP3.2. Earlier reports show that upon arginine starvation, cultured Leishmania parasites promptly activate an Arginine Deprivation Response (ADR) pathway, resulting in the stoichiometric up-regulation of LdAAP3.2 mRNA, protein and activity. Lysosomes, on the other hand, are known to employ a specific sensor and an arginine-activated amino acid transporter, solute carrier family 38 member 9 (SLC38A9) that monitors intra-lysosome arginine sufficiency and subsequently up-regulates cellular mTORkinase activity. The present study investigates the interaction between Leishmania and macrophage-lysosome arginine sensing machinery. We show that infection with L. donovani activates SLC38A9 arginine sensing in the human monocyte like-macrophage cell line (THP-1) when grown under physiological concentrations of arginine (0.1 mM). However, supplementing the macrophage growth medium with excess arginine (1.5 mM) followed by infection led to the down-regulation of SLC38A9. Similarly, THP-1 cells infected with LdAAP3.2 null mutants grown in 0.1 mM arginine resulted in reduced expression of SLC38A9 and mTOR. These results indicate that inside the host macrophage, Leishmania overcome low arginine levels by up-regulating the transport of arginine via LdAAP3 and SLC38A9 signalling. Furthermore, while LdAAP3.2 null mutants were impaired in their ability to develop inside THP-1 macrophages, their infectivity and intracellular growth were restored in SLC38A9 silenced macrophages. This study provides the first identification of regulatory role of SLC38A9 in the expression and role of LdAAP3.Author SummaryLeishmania donovani, the causative agent of kala-azar, exhibits a digenetic life cycle. Following infection of the mammalian host, promastigotes differentiate into intracellular amastigotes within the phagolysosome of macrophages. Arginine is a central point of competition between the host and the pathogen. L. donovani senses lack of arginine in the surrounding micro-environment and activates a unique ADR pathway, thus upregulating the expression of the arginine transporter (LdAAP3). The arginine-activated amino acid transporter SLC38A9 localizes to the lysosome surface of mammalian cells and acts as a sensor that transmits information about arginine levels in the lysosome lumen to the mechanistic target of rapamycin (mTOR) kinase. In the present study, we identified the functional interaction of host SLC38A9 and parasite LdAAP3 in macrophages infected with L. donovani. We report that host SLC38A9 upregulation is critical for enhancing and maintaining high LdAAP3 levels in intracellular L. donovani. Our results decode crucial information regarding the molecular mechanism involved in the arginine sensing response in L. donovani-infected host cells. These findings increase our understanding of the interaction of signalling intermediates during Leishmania infection which may lead to the discovery of novel therapeutic interventions.


2021 ◽  
Vol 32 ◽  
pp. S368
Author(s):  
K. del Moral ◽  
C. Riess ◽  
A-S. Schulz ◽  
T. Fiedler ◽  
C-F. Classen ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2111
Author(s):  
Alessandra Sacchi ◽  
Germana Grassi ◽  
Stefania Notari ◽  
Simona Gili ◽  
Veronica Bordoni ◽  
...  

Massive platelet activation and thrombotic events characterize severe COVID-19, highlighting their critical role in SARS-CoV-2-induced immunopathology. Since there is a well-described expansion of myeloid-derived suppressor cells (MDSC) in severe COVID-19, we evaluated their possible role in platelet activation during SARS-CoV-2 infection. During COVID-19, a lower plasmatic L-arginine level was observed compared to healthy donors, which correlated with MDSC frequency. Additionally, activated GPIIb/IIIa complex (PAC-1) expression was higher on platelets from severe COVID-19 patients compared to healthy controls and inversely correlated with L-arginine plasmatic concentration. Notably, MDSC were able to induce PAC-1 expression in vitro by reducing L-arginine concentration, indicating a direct role of PMN-MDSC in platelet activation. Accordingly, we found a positive correlation between ex vivo platelet PAC-1 expression and PMN-MDSC frequency. Overall, our data demonstrate the involvement of PMN-MDSC in triggering platelet activation during COVID-19, highlighting a novel role of MDSC in driving COVID-19 pathogenesis.


2021 ◽  
Vol 22 (14) ◽  
pp. 7628
Author(s):  
Chunjing Wu ◽  
Min You ◽  
Dao Nguyen ◽  
Medhi Wangpaichitr ◽  
Ying-Ying Li ◽  
...  

Melanoma as a very aggressive type of cancer is still in urgent need of improved treatment. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and arginine deiminase (ADI-PEG20) are two of many suggested drugs for treating melanoma. Both have shown anti-tumor activities without harming normal cells. However, resistance to both drugs has also been noted. Studies on the mechanism of action of and resistance to these drugs provide multiple targets that can be utilized to increase the efficacy and overcome the resistance. As a result, combination strategies have been proposed for these drug candidates with various other agents, and achieved enhanced or synergistic anti-tumor effect. The combination of TRAIL and ADI-PEG20 as one example can greatly enhance the cytotoxicity to melanoma cells including those resistant to the single component of this combination. It is found that combination treatment generally can alter the expression of the components of cell signaling in melanoma cells to favor cell death. In this paper, the signaling of TRAIL and ADI-PEG20-induced arginine deprivation including the main mechanism of resistance to these drugs and exemplary combination strategies is discussed. Finally, factors hampering the clinical application of both drugs, current and future development to overcome these hurdles are briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document