scholarly journals NLRC5 Inhibits Inflammation of Secretory Phase Ectopic Endometrial Stromal Cells by Up-Regulating Autophagy in Ovarian Endometriosis

2020 ◽  
Vol 11 ◽  
Author(s):  
Runhua He ◽  
Xiaojing Liu ◽  
Jing Zhang ◽  
Zhongzheng Wang ◽  
Wenyan Wang ◽  
...  
1960 ◽  
Vol XXXIII (II) ◽  
pp. 261-276 ◽  
Author(s):  
G. Hellweg ◽  
J. Ferin ◽  
K. G. Ober

ABSTRACT 65 endometrial biopsies from castrated women who had received either natural or artificial sex hormone therapy were studied microscopically. Attention was paid to various histologic criteria, especially to the number of endometrial granulocytes (»K« cells, KZ). The following was obtained: The »K« cells are completely absent when no hormone substitution therapy is given. They were also lacking when the castrated patients were treated only with oestrogens, even if the dose given was ten-times that found in women during the reproductive ages. In contrast, the »K« cells developed from the endometrial stromal cells only under influence of progesterone, usually appearing first 8–10 days after the administration of the gestagen. The »K« cells were demonstrable in the number corresponding to a normal secretory phase only then, when the oestrogen-progesterone dosage ratio had induced a fully-developed secretory change, as measured by the usual histologic criteria. With an overdosage of oestrogen the »K« cells were either absent or were very sparse. Contrarily, an overdosage of progesterone had no influence on their number. The development of endometrial glands does not always entirely parallel that of the stroma in castrated patients following hormone therapy. A more exact indicator for the proper dose for the production of a secretory phase by hormone therapy seems to be the number of »K« cells in the endometrial stroma.


2021 ◽  
Vol 22 (19) ◽  
pp. 10648
Author(s):  
Alina M. Gamisonia ◽  
Marina N. Yushina ◽  
Irina A. Fedorova-Gogolina ◽  
Mikhail G. Akimov ◽  
Chupalav M. Eldarov ◽  
...  

Endometriosis is characterized by the formation and development of endometrial tissues outside the uterus, based on an imbalance between proliferation and cell death, leading to the uncontrolled growth of ectopic foci. The potential target for the regulation of these processes is the endocannabinoid system, which was found to be involved in the migration, proliferation, and survival of tumor cells. In this paper, we investigated the effect of endocannabinoid-like compounds from the N-acyl dopamine (NADA) family on the viability of stromal cells from ectopic and eutopic endometrium of patients with ovarian endometriosis. N-arachidonoyldopamine, N-docosahexaenoyldopamine, and N-oleoyldopamine have been shown to have a five-times-more-selective cytotoxic effect on endometrioid stromal cells. To study the mechanisms of the toxic effect, inhibitory analysis, measurements of caspase-3/9 activity, reactive oxygen species, and the mitochondrial membrane potential were performed. It was found that NADA induced apoptosis via an intrinsic pathway through the CB1 receptor and downstream serine palmitoyltransferase, NO synthase activation, increased ROS production, and mitochondrial dysfunction. The higher selectivity of NADA for endometriotic stromal cells and the current lack of effective drug treatment can be considered positive factors for further research of these compounds as possible therapeutic agents against endometriosis.


2001 ◽  
Vol 86 (12) ◽  
pp. 5964-5972
Author(s):  
Antonis Makrigiannakis ◽  
George Coukos ◽  
Anastasia Mantani ◽  
Prokopis Prokopakis ◽  
Geoffrey Trew ◽  
...  

The Wilms’ tumor suppressor gene (WT1) encodes a zinc-finger containing transcription factor that is selectively expressed in the developing urogenital tract and functions as a tissue-specific developmental regulator. In addition to its gene-regulatory function through DNA binding properties, WT-1 also regulates transcription by formation of protein-protein complexes. These properties place WT-1 as a major regulator of cell growth and differentiation. In view of these observations, we studied WT1 mRNA and protein in human endometrial extracts and in endometrial stromal cells (ESCs) differentiating into decidual cells in vitro, by RT-PCR and Western blotting, respectively. WT1 protein expression was also studied in situ in the proliferative and the secretory phase of the menstrual cycle in the early pregnant state. Analysis by PCR of total RNA prepared from human ESCs demonstrated the presence of WT1 mRNA and four WT1 mRNA splice variants. Western blot analysis of nuclear protein extracts from ESCs yielded one immunoreactive protein of the expected size (approximately 52–54 kDa) recognized by the WT1 antibody. Immunohistochemical staining showed that WT1 protein is localized only to nuclei of human endometrial stromal cells. It remains constant in the proliferative and the secretory phase of the menstrual cycle and is increased remarkably during decidualization in early pregnancy. ESCs decidualized in vitro were investigated for WT-1 expression, which confirmed that decidualizing stimuli (E2, medroxy-progesterone-acetate, and relaxin for 12 d or cAMP and progesterone for 1–4 d) induced WT-1 mRNA (P < 0.05) and increased protein levels (P < 0.05). These data indicate that in humans the WT1 gene is expressed in ESCs and its mRNA and protein levels remain constant in the proliferative and the secretory phase of the menstrual cycle and that WT1 mRNA and protein expression increases significantly in ESCs when these cells differentiate into decidual cells.


Author(s):  
Sangappa B. Chadchan ◽  
Vineet K. Maurya ◽  
Pooja Popli ◽  
Ramakrishna Kommagani

AbstractSTUDY QUESTIONIs SARS-CoV-2 receptor, angiotensin-converting enzyme 2 (ACE 2) expressed in the human endometrium during the menstrual cycle, and does it participate in endometrial decidualization?SUMMARY ANSWERACE2 protein is highly expressed in human endometrial stromal cells during the secretory phase and is essential for human endometrial stromal cell decidualization.WHAT IS KNOWN ALREADYACE2 is expressed in numerous human tissues including the lungs, heart, intestine, kidneys and placenta. ACE2 is also the receptor by which SARS-CoV-2 enters human cells.STUDY DESIGN, SIZE, DURATIONProliferative (n = 9) and secretory (n = 6) phase endometrium biopsies from healthy reproductive-age women and primary human endometrial stromal cells from proliferative phase endometrium were used in the study.PARTICIPANTS/MATERIALS, SETTING, METHODSACE2 expression and localization were examined by qRT-PCR, Western blot, and immunofluorescence in both human endometrial samples and mouse uterine tissue. The effect of ACE2 knockdown on morphological and molecular changes of human endometrial stromal cell decidualization were assessed. Ovariectomized mice were treated with estrogen or progesterone to determine the effects of these hormones on ACE2 expression.MAIN RESULTS AND THE ROLE OF CHANCEIn human tissue, ACE2 protein is expressed in both endometrial epithelial and stromal cells in the proliferative phase of the menstrual cycle, and expression increases in stromal cells in the secretory phase. The ACE2 mRNA (P < 0.0001) and protein abundance increased during primary human endometrial stromal cell (HESC) decidualization. HESCs transfected with ACE2-targeting siRNA were less able to decidualize than controls, as evidenced by a lack of morphology change and lower expression of the decidualization markers PRL and IGFBP1 (P < 0.05). In mice during pregnancy, ACE2 protein was expressed in uterine epithelial and stromal cells increased through day six of pregnancy. Finally, progesterone induced expression of Ace2 mRNA in mouse uteri more than vehicle or estrogen (P < 0.05).LARGE SCALE DATAN/A.LIMITATIONS, REASONS FOR CAUTIONExperiments assessing the function of ACE2 in human endometrial stromal cell decidualization were in vitro. Whether SARS-CoV-2 can enter human endometrial stromal cells and affect decidualization have not been assessed.WIDER IMPLICATIONS OF THE FINDINGSExpression of ACE2 in the endometrium allow SARS-CoV-2 to enter endometrial epithelial and stromal cells, which could impair in vivo decidualization, embryo implantation, and placentation. If so, women with COVID-19 may be at increased risk of early pregnancy loss.STUDY FUNDINGS/COMPETING INTEREST(S)This study was supported by National Institutes of Health / National Institute of Child Health and Human Development grants R01HD065435 and R00HD080742 to RK and Washington University School of Medicine start-up funds to RK. The authors declare that they have no conflicts of interest.


2021 ◽  
Author(s):  
Mayuko Murakami ◽  
Satoko Osuka ◽  
Ayako Muraoka ◽  
Shotaro Hayashi ◽  
Bayasula Bayasula ◽  
...  

Abstract Background Endometriosis is a complex syndrome characterized by an estrogen-dependent chronic inflammatory process that affects 10% of women of reproductive age. Ovarian endometriosis (OE) is the most common lesion in endometriosis and may cause infertility in addition to dysmenorrhea. Hormonal treatments for endometriosis suppress ovulation; hence, they are not compatible with fertility. The inflammasome is a complex that includes Nod-like receptor (NLR) family proteins that sense pathogen-/danger‐associated molecular patterns and homeostasis-altering molecular processes. It has been reported that the nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain-containing (NLRP) 3 inflammasome, which contributes to the activation of interleukin-1 beta (IL-1β), might be related to the progression of endometriosis. Therefore, the aim of the present study was to evaluate non-hormonal therapies for OE, such as the inhibitors of the NLRP3 inflammasome. Methods The expression of NLRP3 was measured in the eutopic endometrium (EM) of patients with/without endometriosis and OE and stromal cells derived from the endometrium of patients with endometriosis and OE (endometrial stromal cells [ESCs] and cyst-derived stromal cells [CSCs]). The effect of an NLRP3 inhibitor (MCC950) on ESC and CSC survival and IL-1β production was evaluated. We then administered MCC950 to a murine model of OE to evaluate its effects on OE lesions and ovarian function. Results NLRP3 gene and protein expression levels were higher in OE and CSCs than in EM and ESCs, respectively. MCC950 treatment significantly reduced the survival of CSCs but not that of ESCs. Moreover, MCC950 treatment reduced the co-localization of NLRP3 and IL-1β in CSCs and IL-1β concentrations in CSC supernatants. In the murine model, MCC950 treatment reduced OE lesion size compared to phosphate-buffered saline treatment (89 ± 15 vs. 49 ± 9.3 mm3 per ovary; P < 0.05). In addition, IL-1β and Ki67 levels in the OE-associated epithelia and oxidative stress markers of granulosa cells were reduced in the MCC950-treated group. Conclusions These results indicate that NLRP3/IL-1β is involved in the pathogenesis of endometriosis and that NLRP3 inhibitors may be useful for suppressing OE and improving the function of ovaries with endometriosis.


Reproduction ◽  
2017 ◽  
Vol 153 (6) ◽  
pp. 809-820 ◽  
Author(s):  
Hengwei Liu ◽  
Zhibing Zhang ◽  
Wenqian Xiong ◽  
Ling Zhang ◽  
Yao Xiong ◽  
...  

Endometriosis is a benign gynecological disease that shares some characteristics with malignancy like migration and invasion. It has been reported that both hypoxia-inducible factor-1α (HIF-1α) and autophagy were upregulated in ectopic endometrium of patients with ovarian endometriosis. However, the crosstalk between HIF-1α and autophagy in the pathogenesis of endometriosis remains to be clarified. Accordingly, we investigated whether autophagy was regulated by HIF-1α, as well as whether the effect of HIF-1α on cell migration and invasion is mediated through autophagy upregulation. Here, we found that ectopic endometrium from patients with endometriosis highly expressed HIF-1α and autophagy-related protein LC3. In cultured human endometrial stromal cells (HESCs), autophagy was induced by hypoxia in a time-dependent manner and autophagy activation was dependent on HIF-1α. In addition, migration and invasion ability of HESCs were enhanced by hypoxia treatment, whereas knockdown of HIF-1α attenuated this effect. Furthermore, inhibiting autophagy with specific inhibitors and Beclin1 siRNA attenuated hypoxia triggered migration and invasion of HESCs. Taken together, these results suggest that HIF-1α promotes HESCs invasion and metastasis by upregulating autophagy. Thus, autophagy may be involved in the pathogenesis of endometriosis and inhibition of autophagy might be a novel therapeutic approach to the treatment of endometriosis.


2015 ◽  
Vol 30 (7) ◽  
pp. 1677-1689 ◽  
Author(s):  
Jie Mei ◽  
Xiao-Yong Zhu ◽  
Li-Pin Jin ◽  
Zhong-Liang Duan ◽  
Da-Jin Li ◽  
...  

Reproduction ◽  
2012 ◽  
Vol 143 (4) ◽  
pp. 531-538 ◽  
Author(s):  
Huan Yang ◽  
Yuping Zhou ◽  
Benjiamin Edelshain ◽  
Frederick Schatz ◽  
Charles J Lockwood ◽  
...  

FKBP4 (FKBP52) and FKBP5 (FKBP51) are progestin receptor (PR) co-chaperone proteins that enhance and inhibit, respectively, progestin-mediated transcription by PR. Here, we examinedFKBP4andFKBP5expression in the eutopic endometrium of fertile women with endometriosis and effects of FKBP4 and FKBP5 on the decidualization of human endometrial stromal cells (HESCs), and assessed HOXA10 regulation of FKBP4. Expression ofFKBP4mRNA was increased in the late proliferative phase and remained elevated throughout the secretory phase.FKBP5expression was low and remained constant throughout the menstrual cycle. Compared with controls,FKBP4mRNA expression was decreased in the endometrium of women with endometriosis, whereas no significant endometriosis-related change was seen forFKBP5. Cultured HESCs were treated with eitherFKBP4orFKBP5siRNA and then decidualized by incubation with progesterone (P4) and 8-bromoadenosine cAMP. Treatment of HESCs withFKBP4siRNA resulted in 60% lowerIGFBP1expression. In contrast, incubation withFKBP5siRNA did not significantly decreaseIGFBP1expression duringin vitrodecidualization.HOXA10andFKBP4expression increased in parallel duringin vitrodecidualization. In HESCs, overexpressed HOXA10 enhanced FKBP4 mRNA and protein levels, whereas HOXA10 knockdown decreased FKBP4 mRNA and protein levels compared with controls. Similarly, duringin vitrodecidualization,FKBP4expression was decreased in HOXA10-silenced cells. EnhancedHOXA10expression in HESCs elicits a decidualization mediating increase inFKBP4expression. The findings are consistent with the observation that women with endometriosis have diminishedFKBP4expression leading to impaired decidualization and infertility. The P4resistance seen in endometriosis may be mediated through HOXA10-regulatedFKBP4expression.


Sign in / Sign up

Export Citation Format

Share Document