scholarly journals The Treatment of Rhodiola Mimics Exercise to Resist High-Fat Diet-Induced Muscle Dysfunction via Sirtuin1-Dependent Mechanisms

2021 ◽  
Vol 12 ◽  
Author(s):  
Baiyang You ◽  
Yaoshan Dun ◽  
Siqian Fu ◽  
Dake Qi ◽  
Wenliang Zhang ◽  
...  

Muscle dysfunction is a complication of high-fat diet (HFD)-induced obesity that could be prevented by exercise, but patients did not get enough therapeutic efficacy from exercise due to multiple reasons. To explore alternative or supplementary approaches to prevent or treat muscle dysfunction in individuals with obesity, we investigated the effects of Rhodiola on muscle dysfunction as exercise pills. SIRT1 might suppress atrogenes expression and improve mitochondrial quality control, which could be a therapeutic target stimulated by exercise and Rhodiola, but further mechanisms remain unclear. We verified the lipid metabolism disorders and skeletal muscle dysfunction in HFD feeding mice. Moreover, exercise and Rhodiola were used to intervene mice with a HFD. Our results showed that exercise and Rhodiola prevented muscle atrophy and dysfunction in obese mice and activating the SIRT1 pathway, while atrogenes were suppressed and mitochondrial quality control was improved. EX-527, SIRT1 inhibitor, was used to validate the essential role of SIRT1 in salidroside benefit. Results of cell culture experiment showed that salidroside alleviated high palmitate-induced atrophy and mitochondrial quality control impairments, but these improvements of salidroside were inhibited by EX-527 in C2C12 myotubes. Overall, Rhodiola mimics exercise that activates SIRT1 signaling leading to improvement of HFD-induced muscle dysfunction.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wenliang Zhang ◽  
Baiyang You ◽  
Dake Qi ◽  
Ling Qiu ◽  
Jeffrey W. Ripley-Gonzalez ◽  
...  

AbstractObesity induces skeletal muscle dysfunction. The pathogenesis of which appears to substantially involve mitochondrial dysfunction, arising from impaired quality control. Exercise is a major therapeutic strategy against muscle dysfunction. Trimetazidine, a partial inhibitor of lipid oxidation, has been proposed as a metabolic modulator for several cardiovascular pathologies. However, the effects of Trimetazidine on regulating skeletal muscle function are largely unknown. Our present study used cell culture and obese mice models to test a novel hypothesis that Trimetazidine could improve muscle atrophy with similar results to exercise. In C2C12 cells, high palmitic acid-induced atrophy and mitochondrial dysfunction, which could be reversed by the treatment of Trimetazidine. In our animal models, with high-fat diet-induced obesity associated with skeletal muscle atrophy, Trimetazidine prevented muscle dysfunction, corrected metabolic abnormalities, and improved mitochondrial quality control and mitochondrial functions similarly to exercise. Thus, our study suggests that Trimetazidine successfully mimics exercise to enhance mitochondrial quality control leading to improved high-fat diet-induced muscle dysfunction.


Planta Medica ◽  
2011 ◽  
Vol 77 (12) ◽  
Author(s):  
C Charkhonpunya ◽  
S Sireeratawong ◽  
S Komindr ◽  
N Lerdvuthisopon

2016 ◽  
Author(s):  
Ann-Kristin Picke ◽  
Lykke Sylow ◽  
Lisbeth L V Moller ◽  
Rasmus Kjobsted ◽  
Erik Richter ◽  
...  

2021 ◽  
Vol 137 ◽  
pp. 111370
Author(s):  
Chethan Sampath ◽  
Derek Wilus ◽  
Mohammad Tabatabai ◽  
Michael L. Freeman ◽  
Pandu R. Gangula

Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1740
Author(s):  
Yuning Pang ◽  
Xiang Xu ◽  
Xiaojun Xiang ◽  
Yongnan Li ◽  
Zengqi Zhao ◽  
...  

A high-fat diet often leads to excessive fat deposition and adversely affects the organism. However, the mechanism of liver fat deposition induced by high fat is still unclear. Therefore, this study aimed at acetyl-CoA carboxylase (ACC) to explore the mechanism of excessive liver deposition induced by high fat. In the present study, the ORF of ACC1 and ACC2 were cloned and characterized. Meanwhile, the mRNA and protein of ACC1 and ACC2 were increased in liver fed with a high-fat diet (HFD) or in hepatocytes incubated with oleic acid (OA). The phosphorylation of ACC was also decreased in hepatocytes incubated with OA. Moreover, AICAR dramatically improved the phosphorylation of ACC, and OA significantly inhibited the phosphorylation of the AMPK/ACC pathway. Further experiments showed that OA increased global O-GlcNAcylation and agonist of O-GlcNAcylation significantly inhibited the phosphorylation of AMPK and ACC. Importantly, the disorder of lipid metabolism caused by HFD or OA could be rescued by treating CP-640186, the dual inhibitor of ACC1 and ACC2. These observations suggested that high fat may activate O-GlcNAcylation and affect the AMPK/ACC pathway to regulate lipid synthesis, and also emphasized the importance of the role of ACC in lipid homeostasis.


Sign in / Sign up

Export Citation Format

Share Document