scholarly journals Intranasal Delivery of Nerve Growth Factor in Neurodegenerative Diseases and Neurotrauma

2021 ◽  
Vol 12 ◽  
Author(s):  
Luigi Manni ◽  
Giorgio Conti ◽  
Antonio Chiaretti ◽  
Marzia Soligo

Since the 1980s, the development of a pharmacology based on nerve growth factor (NGF) has been postulated for the therapy of Alzheimer’s disease (AD). This hypothesis was based on the rescuing effect of the neurotrophin on the cholinergic phenotype of the basal forebrain neurons, primarily compromised during the development of AD. Subsequently, the use of NGF was put forward to treat a broader spectrum of neurological conditions affecting the central nervous system, such as Parkinson’s disease, degenerative retinopathies, severe brain traumas and neurodevelopmental dysfunctions. While supported by solid rational assumptions, the progress of a pharmacology founded on these hypotheses has been hampered by the difficulty of conveying NGF towards the brain parenchyma without resorting to invasive and risky delivery methods. At the end of the last century, it was shown that NGF administered intranasally to the olfactory epithelium was able to spread into the brain parenchyma. Notably, after such delivery, pharmacologically relevant concentration of exogenous NGF was found in brain areas located at considerable distances from the injection site along the rostral-caudal axis. These observations paved the way for preclinical characterization and clinical trials on the efficacy of intranasal NGF for the treatment of neurodegenerative diseases and of the consequences of brain trauma. In this review, a summary of the preclinical and clinical studies published to date will be attempted, as well as a discussion about the mechanisms underlying the efficacy and the possible development of the pharmacology based on intranasal conveyance of NGF to the brain.

Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 405
Author(s):  
Rossella Brandi ◽  
Marietta Fabiano ◽  
Corinna Giorgi ◽  
Ivan Arisi ◽  
Federico La Regina ◽  
...  

In the brain, the neurotrophin Nerve growth factor (NGF) regulates not only neuronal survival and differentiation, but also glial and microglial functions and neuroinflammation. NGF is known to regulate oligodendrogenesis, reducing myelination in the central nervous system (CNS). In this study, we found that NGF controls oligodendrogenesis by modulating the levels of miR-219a-5p, a well-known positive regulator of oligodendrocyte differentiation. We exploited an NGF-deprivation mouse model, the AD11 mice, in which the postnatal expression of an anti-NGF antibody leads to NGF neutralization and progressive neurodegeneration. Notably, we found that these mice also display increased myelination. A microRNA profiling of AD11 brain samples and qRT-PCR analyses revealed that NGF deprivation leads to an increase of miR-219a-5p levels in hippocampus and cortex and a corresponding down-regulation of its predicted targets. Neurospheres isolated from the hippocampus of AD11 mice give rise to more oligodendrocytes and this process is dependent on miR-219a-5p, as shown by decoy-mediated inhibition of this microRNA. Moreover, treatment of AD11 neurospheres with NGF inhibits miR-219a-5p up-regulation and, consequently, oligodendrocyte differentiation, while anti-NGF treatment of wild type (WT) oligodendrocyte progenitors increases miR-219a-5p expression and the number of mature cells. Overall, this study indicates that NGF inhibits oligodendrogenesis and myelination by down-regulating miR-219a-5p levels, suggesting a novel molecular circuitry that can be exploited for the discovery of new effectors for remyelination in human demyelinating diseases, such as Multiple Sclerosis.


2004 ◽  
Vol 15 (6) ◽  
pp. 411-417 ◽  
Author(s):  
Alessandra Micera ◽  
Alessandro Lambiase ◽  
Luigi Aloe ◽  
Sergio Bonini ◽  
Francesca Levi-Schaffer ◽  
...  

Brain Repair ◽  
1990 ◽  
pp. 99-112
Author(s):  
Dan Lindholm ◽  
Christine Bandtlow ◽  
Matthias Spranger ◽  
Bastian Hengerer ◽  
Michael Meyer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document