scholarly journals Toxic Peptide From Palythoa caribaeorum Acting on the TRPV1 Channel Prevents Pentylenetetrazol-Induced Epilepsy in Zebrafish Larvae

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiufen Wang ◽  
Qiwen Liao ◽  
Hanbin Chen ◽  
Guiyi Gong ◽  
Shirley Weng In Siu ◽  
...  

PcActx peptide, identified from the transcriptome of zoantharian Palythoa caribaeorum, was clustered into the phylogeny of analgesic polypeptides from sea anemone Heteractis crispa (known as APHC peptides). APHC peptides were considered as inhibitors of transient receptor potential cation channel subfamily V member 1 (TRPV1). TRPV1 is a calcium-permeable channel expressed in epileptic brain areas, serving as a potential target for preventing epileptic seizures. Through in silico and in vitro analysis, PcActx peptide was shown to be a potential TRPV1 channel blocker. In vivo studies showed that the linear and oxidized PcActx peptides caused concentration-dependent increases in mortality of zebrafish larvae. However, monotreatment with PcActx peptides below the maximum tolerated doses (MTD) did not affect locomotor behavior. Moreover, PcActx peptides (both linear and oxidized forms) could effectively reverse pentylenetetrazol (PTZ)-induced seizure-related behavior in zebrafish larvae and prevent overexpression of c-fos and npas4a at the mRNA level. The excessive production of ROS induced by PTZ was markedly attenuated by both linear and oxidized PcActx peptides. It was also verified that the oxidized PcActx peptide was more effective than the linear one. In particular, oxidized PcActx peptide notably modulated the mRNA expression of genes involved in calcium signaling and γ-aminobutyric acid (GABA)ergic-glutamatergic signaling, including calb1, calb2, gabra1, grm1, gria1b, grin2b, gat1, slc1a2b, gad1b, and glsa. Taken together, PcActx peptide, as a novel neuroactive peptide, exhibits prominent anti-epileptic activity, probably through modulating calcium signaling and GABAergic-glutamatergic signaling, and is a promising candidate for epilepsy management.

Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 668
Author(s):  
Concetta Altamura ◽  
Maria Raffaella Greco ◽  
Maria Rosaria Carratù ◽  
Rosa Angela Cardone ◽  
Jean-François Desaphy

Ovarian cancer (OC) is the deadliest gynecologic cancer, due to late diagnosis, development of platinum resistance, and inadequate alternative therapy. It has been demonstrated that membrane ion channels play important roles in cancer processes, including cell proliferation, apoptosis, motility, and invasion. Here, we review the contribution of ion channels in the development and progression of OC, evaluating their potential in clinical management. Increased expression of voltage-gated and epithelial sodium channels has been detected in OC cells and tissues and shown to be involved in cancer proliferation and invasion. Potassium and calcium channels have been found to play a critical role in the control of cell cycle and in the resistance to apoptosis, promoting tumor growth and recurrence. Overexpression of chloride and transient receptor potential channels was found both in vitro and in vivo, supporting their contribution to OC. Furthermore, ion channels have been shown to influence the sensitivity of OC cells to neoplastic drugs, suggesting a critical role in chemotherapy resistance. The study of ion channels expression and function in OC can improve our understanding of pathophysiology and pave the way for identifying ion channels as potential targets for tumor diagnosis and treatment.


2014 ◽  
Vol 306 (4) ◽  
pp. H574-H584 ◽  
Author(s):  
Jack Rubinstein ◽  
Valerie M. Lasko ◽  
Sheryl E. Koch ◽  
Vivek P. Singh ◽  
Vinicius Carreira ◽  
...  

Transient receptor potential cation channels have been implicated in the regulation of cardiovascular function, but only recently has our laboratory described the vanilloid-2 subtype (TRPV2) in the cardiomyocyte, though its exact mechanism of action has not yet been established. This study tests the hypothesis that TRPV2 plays an important role in regulating myocyte contractility under physiological conditions. Therefore, we measured cardiac and vascular function in wild-type and TRPV2−/− mice in vitro and in vivo and found that TRPV2 deletion resulted in a decrease in basal systolic and diastolic function without affecting loading conditions or vascular tone. TRPV2 stimulation with probenecid, a relatively selective TRPV2 agonist, caused an increase in both inotropy and lusitropy in wild-type mice that was blunted in TRPV2−/− mice. We examined the mechanism of TRPV2 inotropy/lusitropy in isolated myocytes and found that it modulates Ca2+ transients and sarcoplasmic reticulum Ca2+ loading. We show that the activity of this channel is necessary for normal cardiac function and that there is increased contractility in response to agonism of TRPV2 with probenecid.


2014 ◽  
Vol 31 (1) ◽  
pp. 41-49
Author(s):  
Oleh Yadlovskyi ◽  
Tatiana Bukhtiarova ◽  
Lyudmila Bobkova ◽  
Irina Tatianshenko ◽  
Igor Monchak ◽  
...  

SUMMARY The study of features of pharmacodynamics of a new analgesic is an important and urgent task of modern pharmacology. These data allow us to clarify the nosology for application of an analgesic and to create a theoretical background to optimize its use. An effect mediated by the transient receptor potential cation channel, subfamily V, member 1 (TRPV1) activation can also be an effective mechanism of the analgesic action. We evaluated the possibility of TRPV1 participation in implementation of the analgesic effect with the antiviral action of amizonum during the experiment. It is known that amino acids Tyr511 and Ser512 are the main components of the active site of TRPV1. In this connection, dipeptide Tyr-Ser has been completely synthesized as a model of the active site of TRPV1. In the experiment model this was shown, using the spectrophotometric method, with the formation of the “capsaicin - Tyr- Ser” intermolecular complex at the level of the stability constant Kkor=0.998 and Kr=0.3•10-4 L/mol and the “amizonum - Tyr-Ser” weak intermolecular complex Kr=0.05•104 L/mol; Kkor= 0.995, respectively. The data verification was carried out in experiments in vitro (isolated ratportal vein) and in vivo (Tail-flick model), with the TRPV1 agonist. It was shown that the amplitude of smooth muscle (SM) contraction of the portal vein at a capsaicin concentration 0.1 μmol/L, 0.5 μmol/L capsazepine, and 1.0 μmol/L amizonum was +30.3±5.3%, -3.2± 2.7% and +7.1±3.2% from initial level, respectivelly. In a combined application of amizonum with capsaicin or capsazepine, the amplitude of contraction of the SM portal vein was 20.1± 1.3% and -3.0±1.4%, respectively. This indicates the absence of action of amizonum under combined use of capsaicinoids. The Tail-flick model showed atypical potentiation of the amizonum antinociception with the use of capsaicin. The obtained data suggest the low probability of the participation of TRPV1 in the implementation of the antinociceptive action of amizonum.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
David Zhang ◽  
Suelhem Mendoza ◽  
Aaron Bubolz ◽  
Makoto Suzuki ◽  
David Gutterman

Agonist-induced Ca 2+ entry in endothelial cells is important for the synthesis and release of vasoactive factors, although mechanisms of Ca 2+ entry remain largely unknown. Emerging evidence suggests that the transient receptor potential vanilloid 4 (TRPV4) channel, a Ca 2+ -permeant TRP channel, is expressed in endothelial cells and may be involved in the regulation of vascular tone. Here we investigated the potential role of TRPV4 channels in acetylcholine-induced vasodilation in vitro and in vivo using the TRPV4 knockout (TRPV4 −/− ) mice model. Carotid arteries were isolated and preconstricted with the thromboxane A2 mimetic U46619. Concentration-dependent relaxations to acetylcholine (10 −9 –10 −5 M) were markedly reduced in carotids of TRPV4 −/− vs. wild-type (WT) mice (maximal relaxations of 31±12% vs 53±4%, respectively; n=4 mice). There was no significant change in the ED50 for Ach. In both WT and TRPV4 −/− , acetylcholine-induced relaxations were blocked and converted to constrictions by the NO synthase inhibitor L-NAME (maximal relaxations of −25±6% and −24±7%, respectively). There was no difference in papaverine-induced relaxations between WT and TRPV4 −/− mice (maximal relaxations of 93±3% vs. 90±3%, respectively). U46619 caused similar contractions in carotid arteries from those mice. We also compared in vivo vasodilator effects of acetylcholine by measuring changes in blood pressure in those animals. Intravenous administration of acetylcholine (15 ng/gm bolus) decreased blood pressure by 32±6 mmHg in WT mice (from 90±15 to 57±10 mmHg; n=6), whereas blood pressure was reduced by only 10 mmHg in TRPV4 −/− mice (from 67±6 to 56±4 mmHg; n=12). Acetylcholine caused similar reductions in heart rate in WT and TRPV4 −/− mice, with mean changes of 365±57 and 292±40 beats/min, respectively. We conclude that the endothelium-dependent vasodilator response to acetylcholine is reduced both in vitro and in vivo in TRPV4 −/− mice, and these findings may provide novel insight into the mechanisms of Ca 2+ entry evoked by chemical agonists in endothelial cells. The paradoxically lower baseline blood pressure in TRPV4 −/− mice requires further investigation.


2020 ◽  
Vol 11 (11) ◽  
Author(s):  
Xingchen Li ◽  
Yuan Cheng ◽  
Zhiqi Wang ◽  
Jingyi Zhou ◽  
Yuanyuan Jia ◽  
...  

AbstractTransient receptor potential vanilloid 4 (TRPV4) is a calcium-permeable cation channel that has been associated with several types of cancer. However, its biological significance, as well as its related mechanism in endometrial cancer (EC) still remains elusive. In this study, we examined the function of calcium in EC, with a specific focus on TRPV4 and its downstream pathway. We reported here on the findings that a high level of serum ionized calcium was significantly correlated with advanced EC progression, and among all the calcium channels, TRPV4 played an essential role, with high levels of TRPV4 expression associated with cancer progression both in vitro and in vivo. Proteomic and bioinformatics analysis revealed that TRPV4 was involved in cytoskeleton regulation and Rho protein pathway, which regulated EC cell migration. Mechanistic investigation demonstrated that TRPV4 and calcium influx acted on the cytoskeleton via the RhoA/ROCK1 pathway, ending with LIMK/cofilin activation, which had an impact on F-actin and paxillin (PXN) levels. Overall, our findings indicated that ionized serum calcium level was significantly associated with poor outcomes and calcium channel TRPV4 should be targeted to improve therapeutic and preventive strategies in EC.


2015 ◽  
Vol 93 (3) ◽  
pp. 171-176 ◽  
Author(s):  
Aruni Jha ◽  
Pawan Sharma ◽  
Vidyanand Anaparti ◽  
Min H. Ryu ◽  
Andrew J. Halayko

Airway smooth muscle (ASM) contraction controls the airway caliber. Airway narrowing is exaggerated in obstructive lung diseases, such as asthma and chronic obstructive pulmonary disease (COPD). The mechanism by which ASM tone is dysregulated in disease is not clearly understood. Recent research on ion channels, particularly transient receptor potential cation channel, subfamily A, member 1 (TRPA1), is uncovering new understanding of altered airway function. TRPA1, a member of the TRP channel superfamily, is a chemo-sensitive cation channel that can be activated by a variety of external and internal stimuli, leading to the influx of Ca2+. Functional TRPA1 channels have been identified in neuronal and non-neuronal tissues of the lung, including ASM. In the airways, these channels can regulate the release of mediators that are markers of airway inflammation in asthma and COPD. For, example, TRPA1 controls cigarette-smoke-induced inflammatory mediator release and Ca2+ mobilization in vitro and in vivo, a response tied to disease pathology in COPD. Recent work has revealed that pharmacological or genetic inhibition of TRPA1 inhibits the allergen-induced airway inflammation in vitro and airway hyper-responsiveness (AHR) in vivo. Collectively, it appears that TRPA1 channels may be determinants of ASM contractility and local inflammation control, positioning them as part of novel mechanisms that control (patho)physiological function of airways and ASM.


2013 ◽  
Vol 4 (3) ◽  
pp. 129-136 ◽  
Author(s):  
Ari Koivisto ◽  
Antti Pertovaara

AbstractBackgroundTransient receptor potential ankyrin 1 (TRPA1) is a non-selective cation channel permeable to calcium that is expressed on pain-mediating primary afferent nerve fibers. Here we review recent experimental evidence supporting the hypothesis that activation of the TRPA1 channel by reactive compounds generated in diabetes mellitus, such as 4-hydroxynonenal and methylglyoxal, exerts an important role in the pathophysiology of peripheral diabetic neuropathy (PDN). The hypothesis includes development of the early diabetic pain hypersensitivity and the later loss of cutaneous nerve endings of pain fibers and their dysfunction, which are hallmarks of peripheral diabetic neuropathy (PDN).Methods The evidence for a role of the TRPA1 channel in PDN consists of in vitro patch clamp and calcium imaging data and assessments of pain behavior, axon reflex measurements, and immunohistochemical analyses of cutaneous innervation in an experimental animal model of diabetes. The experiments were combined with blocking the TRPA1 channel with selective antagonists Chembridge-5861528 or A-967079.ResultsIn vitro studies indicate that under physiological concentration of Ca2+, methylglyoxal and 4-hydroxynonenal produce sustained activation of the TRPA1 channel and sustained inflow of calcium. In vivo studies indicate that diabetic pain hypersensitivity is maintained by the TRPA1 channel as indicated by the antihypersensitivity effect induced by acute blocking of the TRPA1 channel. Moreover, TRPA1 channel is involved in the development of diabetic hypersensitivity as indicated by prevention of the development of pain hypersensitivity in diabetic animals treated daily with Chembridge-5861528. The diabetes-induced loss of substance P-like cutaneous innervation and that of the TRPA1 channel-mediated cutaneous axon reflex function during the later phase of diabetes were also prevented or delayed by prolonged blocking of the TRPA1 channel. No motor impairment or other obvious side-effects were observed following block of the TRPA1 channel.Conclusions Together the in vitro and in vivo results indicate that reactive compounds generated in diabetes exert, through action on the TRPA1 channel, an important role in the pathophysiology of PDN. Sustained activation of the TRPA1 channel is a plausible mechanism that contributes to the early diabetic pain hypersensitivity and the later loss of cutaneous pain fiber endings and their dysfunction with prolonged diabetes.ImplicationsBlocking the TRPA1 channel with a selective antagonist provides a promising disease-modifying treatment for PDN, with only minor, if any, side-effects.


2021 ◽  
Vol 12 (12) ◽  
Author(s):  
Yahui Zhang ◽  
Baohua Hou ◽  
Peiyu Liang ◽  
Xin Lu ◽  
Yifan Wu ◽  
...  

AbstractMultiple sclerosis (MS) is a chronic inflammatory autoimmune disease in the central nervous system (CNS). The NLRP3 inflammasome is considered an important regulator of immunity and inflammation, both of which play a critical role in MS. However, the underlying mechanism of NLRP3 inflammasome activation is not fully understood. Here we identified that the TRPV1 (transient receptor potential vanilloid type 1) channel in microglia, as a Ca2+ influx-regulating channel, played an important role in NLRP3 inflammasome activation. Deletion or pharmacological blockade of TRPV1 inhibited NLRP3 inflammasome activation in microglia in vitro. Further research revealed that TRPV1 channel regulated ATP-induced NLRP3 inflammasome activation through mediating Ca2+ influx and phosphorylation of phosphatase PP2A in microglia. In addition, TRPV1 deletion could alleviate mice experimental autoimmune encephalomyelitis (EAE) and reduce neuroinflammation by inhibiting NLRP3 inflammasome activation. These data suggested that the TRPV1 channel in microglia can regulate NLRP3 inflammasome activation and consequently mediate neuroinflammation. Meanwhile, our study indicated that TRPV1–Ca2+–PP2A pathway may be a novel regulator of NLRP3 inflammasome activation, pointing to TRPV1 as a potential target for CNS inflammatory diseases.


Sign in / Sign up

Export Citation Format

Share Document