scholarly journals Nesfatin-1 in the Lateral Parabrachial Nucleus Inhibits Food Intake, Modulates Excitability of Glucosensing Neurons, and Enhances UCP1 Expression in Brown Adipose Tissue

2017 ◽  
Vol 8 ◽  
Author(s):  
Jun-hua Yuan ◽  
Xi Chen ◽  
Jing Dong ◽  
Di Zhang ◽  
Kun Song ◽  
...  
2019 ◽  
Vol 316 (3) ◽  
pp. E487-E503 ◽  
Author(s):  
Alexander W. Fischer ◽  
Christian Schlein ◽  
Barbara Cannon ◽  
Joerg Heeren ◽  
Jan Nedergaard

The possibility that recruitment and activation of brown adipose tissue (BAT) thermogenesis could be beneficial for curtailing obesity development in humans prompts a need for a better understanding of the control of these processes [that are often referred to collectively as diet-induced thermogenesis (DIT)]. Dietary conditions are associated with large changes in blood-borne factors that could be responsible for BAT recruitment, but BAT is also innervated by the sympathetic nervous system. To examine the significance of the innervation for DIT recruitment, we surgically denervated the largest BAT depot, i.e., the interscapular BAT depot in mice and exposed the mice at thermoneutrality to a high-fat diet versus a chow diet. Denervation led to an alteration in feeding pattern but did not lead to enhanced obesity, but obesity was achieved with a lower food intake, as denervation increased metabolic efficiency. Conclusively, denervation totally abolished the diet-induced increase in total UCP1 protein levels observed in the intact mice, whereas basal UCP1 expression was not dependent on innervation. The denervation of interscapular BAT did not discernably hyper-recruit other BAT depots, and no UCP1 protein could be detected in the principally browning-competent inguinal white adipose tissue depot under any of the examined conditions. We conclude that intact innervation is essential for diet-induced thermogenesis and that circulating factors cannot by themselves initiate recruitment of brown adipose tissue under obesogenic conditions. Therefore, the processes that link food intake and energy storage to activation of the nervous system are those of significance for the further understanding of diet-induced thermogenesis.


Endocrinology ◽  
2010 ◽  
Vol 151 (9) ◽  
pp. 4236-4246 ◽  
Author(s):  
Aaron N. A. Verty ◽  
Andrew M. Allen ◽  
Brian J. Oldfield

Although the neuronal pathways within the hypothalamus critical in controlling feeding and energy expenditure and projecting to brown adipose tissue (BAT) have been identified and their peptidergic content characterized, endogenous action of such peptides in the control of BAT activity has not been elucidated. Here male Sprague Dawley rats received infusions of either melanin-concentrating hormone antagonist (SNAP-7941) (1 μg/μl · h), orexin A receptor antagonist (SB-334867-A; 1 μg/μl · h), combined SB-334867-A (1 μg/μl · h), and SNAP-7941 (1 μg/μl · h), or melanocortin-3/4 receptor antagonist (SHU9119) (1 μg/μl · h) via an indwelling cannula in the lateral ventricle attached to sc implanted osmotic minipump. BAT temperature, physical activity, body weight, food intake, and changes in uncoupling protein (UCP)-1 were measured. SB-334867-A and SNAP-7941 significantly increased BAT temperature and UCP1 expression and reduced food intake and body weight. Combined infusion of SB-334867-A and SNAP-7941 produced a pronounced response that was greater than the addition of the individual effects in all parameters measured. SHU9119 significantly decreased BAT temperature and UCP1 expression and increased feeding and body weight. In a second series of experiments, the effect of SB-334867-A and SNAP-7941 alone or combination on the expression of the Fos protein was determined. SB-334867-A and SNAP-7941 increased Fos expression in key hypothalamic and brainstem feeding-related regions. In combination, these antagonists produced a greater than additive elevation of Fos expression in most of the regions evaluated. These findings support a role for endogenous orexigenic and anorexigenic hypothalamic peptides acting in concert to create a thermogenic tone via BAT activity.


2014 ◽  
Vol 1837 ◽  
pp. e26-e27
Author(s):  
Igor Golic ◽  
Milica Markelic ◽  
Ksenija Velickovic ◽  
Aleksandra Jankovic ◽  
Ana Stancic ◽  
...  

2020 ◽  
Author(s):  
Xuemei Liu ◽  
Xiyu Feng ◽  
Chao Deng ◽  
Lu Liu ◽  
Yanping Zeng ◽  
...  

Abstract BackgroundPrescription of second-generation antipsychotic drugs (SGAs) to childhood/adolescent has exponentially increased in recent years, which was associated with the greater risk of significant sedation, weight gain, and dyslipidemia. Statin is considered a potential preventive and treatment approach for reducing SGA-induced weight gain and dyslipidemia in schizophrenia patients. However, the effect of statin treatment in children and adolescents with SGA-induced dyslipidemia is not clearly demonstrated.MethodsTo investigate the efficacy of interventions of statin aimed at reversing SGA-induced dyslipidemia, young Sprague Dawley (SD) rats were treated orally with either olanzapine (1.0 mg/kg, t.i.d.), simvastatin (3.0 mg/kg, t.i.d.), olanzapine plus simvastatin (O+S), or vehicle (control) for 5 weeks.ResultsOlanzapine treatment increased weight gain, food intake and feeding efficiency compared to the control, while O+S co-treatment significantly reversed body weight gain but had no significant effect on food intake. Moreover, olanzapine treatment induced a slight but significant reduction in body temperature, with a decrease in locomotor activity. Fasting plasma glucose, triglycerides (TG), and total cholesterol (TC) levels were markedly elevated in the olanzapine-only group, whereas O+S co-treatment significantly ameliorated these changes. A down-regulating of uncoupling protein-1 (UCP1) and peroxisome-proliferator-activated receptor-γ co-activator-1α (PGC-1α) expression was observed in brown adipose tissue (BAT) in the olanzapine-only group, following a significant decrease in the ratio of phosphorylated PKA (p-PKA)/PKA. Interestingly, these protein changes could be reversed by co-treatment with O+B. Our results demonstrated simvastatin to be effective in ameliorating TC and TG elevated by olanzapine.ConclusionsModulation of BAT activity could be a partial mechanism in reducing metabolic side effects caused by SGAs in child and adolescent patients.


2020 ◽  
Author(s):  
Xuemei Liu ◽  
Xiyu Feng ◽  
Chao Deng ◽  
Lu Liu ◽  
Yanping Zeng ◽  
...  

Abstract Background Prescription of second-generation antipsychotic drugs (SGAs) to childhood/adolescent has exponentially increased in recent years, which was associated with the greater risk of significant weight gain and dyslipidemia. Statin is considered a potential preventive and treatment approach for reducing SGA-induced weight gain and dyslipidemia in schizophrenia patients. However, the effect of statin treatment in children and adolescents with SGA-induced dyslipidemia is not clearly demonstrated.Methods To investigate the efficacy of statin interventions for reversing SGA-induced dyslipidemia, young Sprague Dawley rats were treated orally with either olanzapine (1.0 mg/kg, t.i.d.), simvastatin (3.0 mg/kg, t.i.d.), olanzapine plus simvastatin (O+S), or vehicle (control) for 5 weeks. Results Olanzapine treatment increased weight gain, food intake and feeding efficiency compared to the control, while O+S co-treatment significantly reversed body weight gain but without significant effects on food intake. Moreover, olanzapine treatment induced a slight but significant reduction in body temperature, with a decrease in locomotor activity. Fasting plasma glucose, triglycerides (TG), and total cholesterol (TC) levels were markedly elevated in the olanzapine-only group, whereas O+S co-treatment significantly ameliorated these changes. Pronounced activation of lipogenic gene expression in the liver and down-regulated expression of uncoupling protein-1 (UCP1) and peroxisome-proliferator-activated receptor-γ co-activator-1α (PGC-1α) in brown adipose tissue (BAT) was observed in the olanzapine-only group. Interestingly, these protein changes could be reversed by co-treatment with O+B. Conclusions Simvastatin is effective in ameliorating TC and TG elevated by olanzapine. Modulation of BAT activity by statins could be a partial mechanism in reducing metabolic side effects caused by SGAs in child and adolescent patients.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1703-1703
Author(s):  
Yang Yang ◽  
Xinyun Xu ◽  
Katie Graham ◽  
Ahmed Bettaieb ◽  
Christophe Morisseau ◽  
...  

Abstract Objectives Brown adipose tissue (BAT), responsible for energy expenditure through nonshivering thermogenesis, has emerged as a novel target for obesity treatment and prevention. Soluble epoxide hydrolase (sEH), encoded by Ephx2 gene, is a cytosolic enzyme that converts epoxy fatty acids (EpFAs) that are produced by cytochrome P-450 enzymes from polyunsaturated fatty acids into less active diols. Pharmacological inhibitors of sEH, such as trans-4-{4-[3-(4-trifluoromethoxyphenyl)-ureido] cyclohexyloxy} benzoic acid (t-TUCB), have been shown to be beneficial for chronic diseases by inhibiting the degradation of EpFAs. We have previously shown that t-TUCB dose-dependently promotes brown adipogenesis in vitro. This study investigated the therapeutic effects of t-TUCB on BAT activation in diet-induced obese mice. Methods Male C57BL6/J mice were fed a high-fat diet (60% kcal from fat) for 8 weeks followed by random assignment into either the control or t-TUCB group (n = 10 per group) to receive either the vehicle control or t-TUCB (3 mg/kg/day) via osmotic minipump delivery at the subcutaneous area near the interscapular BAT for 6 weeks. Bodyweight and food intake, glucose and insulin tolerance tests, cold tolerance tests, and indirect calorimetry were measured before the mice were euthanized for further biochemical analysis. Results sEH inhibition by t-TUCB in the obese mice did not change body weight, fat pad weight, food intake, fasting blood glucose, glucose and insulin tolerance, or cold tolerance, but significantly decreased blood triglyceride levels and increased heat production during both day and night. Moreover, t-TUCB significantly increased protein expression of brown marker gene PGC-1alpha and lipid droplet-associated protein perilipin (PLIN), but not uncoupling protein 1 (UCP1), in the interscapular BAT of diet-induced obese mice. Conclusions Our results suggest that sEH pharmacological inhibition may be beneficial for BAT activation by increasing mitochondrial biogenesis and lipolysis in the BAT. Further studies using the sEH inhibitors and/or EpFA generating diets for obesity treatment and prevention are warranted. Funding Sources The work was supported by NIH 1R15DK114790–01A1 (to L.Z.), K99DK100736 and R00DK100736 (to A.B.), R15AT008733 (to S.W.), R35 ES030443 and P42ES004699 (to B.D.H).


Obesity ◽  
2018 ◽  
Vol 26 (3) ◽  
pp. 547-558 ◽  
Author(s):  
Zhuolun Song ◽  
Xavier Revelo ◽  
Weijuan Shao ◽  
Lili Tian ◽  
Kejing Zeng ◽  
...  

1989 ◽  
Vol 257 (2) ◽  
pp. E133-E138 ◽  
Author(s):  
K. Tokuyama ◽  
J. Himms-Hagen

Our previous work showed that ob/ob mice responded to physiological concentrations of blood corticosterone (maintained by implanted pellets of corticosterone in adrenalectomized mice) by increasing food intake and blood insulin concentration to a much greater extent than did lean mice. The present study sought to determine whether the chronic presence of corticosterone was necessary or whether a single injection would also have these effects. Lean and ob/ob mice were adrenalectomized at 4.5 wk of age, injected with corticosterone at 10.5 wk of age, and killed 6 or 15 h after injection. A markedly exaggerated hyperinsulinemia was seen in ob/ob mice at 15 h. Food intake increased in both lean and obese mice, and brown adipose tissue thermogenesis (as reflected by mitochondrial guanosine 5'-diphosphate binding) was suppressed in both. We conclude that the ob/ob mouse has an excessive central sensitivity and responsiveness to a rapid action of corticosterone that results in neural activation of insulin secretion and suppression of brown adipose tissue thermogenesis. The persistence of some degree of obesity in the adrenalectomized ob/ob mouse is attributed to the remaining slight hyperinsulinemia coupled with reduced energy expenditure due to persistent thermoregulation at a lower than normal body temperature.


Sign in / Sign up

Export Citation Format

Share Document