scholarly journals Ion Channels in the Paraventricular Hypothalamic Nucleus (PVN); Emerging Diversity and Functional Roles

2018 ◽  
Vol 9 ◽  
Author(s):  
Claire H. Feetham ◽  
Fiona O’Brien ◽  
Richard Barrett-Jolley
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yoko Kato ◽  
Harumi Katsumata ◽  
Ayumu Inutsuka ◽  
Akihiro Yamanaka ◽  
Tatsushi Onaka ◽  
...  

AbstractMultiple sequential actions, performed during parental behaviors, are essential elements of reproduction in mammalian species. We showed that neurons expressing melanin concentrating hormone (MCH) in the lateral hypothalamic area (LHA) are more active in rodents of both sexes when exhibiting parental nursing behavior. Genetic ablation of the LHA-MCH neurons impaired maternal nursing. The post-birth survival rate was lower in pups born to female mice with congenitally ablated MCH neurons under control of tet-off system, exhibiting reduced crouching behavior. Virgin female and male mice with ablated MCH neurons were less interested in pups and maternal care. Chemogenetic and optogenetic stimulation of LHA-MCH neurons induced parental nursing in virgin female and male mice. LHA-MCH GABAergic neurons project fibres to the paraventricular hypothalamic nucleus (PVN) neurons. Optogenetic stimulation of PVN induces nursing crouching behavior along with increasing plasma oxytocin levels. The hypothalamic MCH neural relays play important functional roles in parental nursing behavior in female and male mice.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sanda Iacobas ◽  
Bogdan Amuzescu ◽  
Dumitru A. Iacobas

AbstractMyocardium transcriptomes of left and right atria and ventricles from four adult male C57Bl/6j mice were profiled with Agilent microarrays to identify the differences responsible for the distinct functional roles of the four heart chambers. Female mice were not investigated owing to their transcriptome dependence on the estrous cycle phase. Out of the quantified 16,886 unigenes, 15.76% on the left side and 16.5% on the right side exhibited differential expression between the atrium and the ventricle, while 5.8% of genes were differently expressed between the two atria and only 1.2% between the two ventricles. The study revealed also chamber differences in gene expression control and coordination. We analyzed ion channels and transporters, and genes within the cardiac muscle contraction, oxidative phosphorylation, glycolysis/gluconeogenesis, calcium and adrenergic signaling pathways. Interestingly, while expression of Ank2 oscillates in phase with all 27 quantified binding partners in the left ventricle, the percentage of in-phase oscillating partners of Ank2 is 15% and 37% in the left and right atria and 74% in the right ventricle. The analysis indicated high interventricular synchrony of the ion channels expressions and the substantially lower synchrony between the two atria and between the atrium and the ventricle from the same side.


2017 ◽  
Vol 46 (5) ◽  
pp. 2133-2140 ◽  
Author(s):  
Miguel Domínguez ◽  
Raúl Aguilar‐Roblero ◽  
Gabriela González‐Mariscal

1993 ◽  
Vol 265 (1) ◽  
pp. H39-H46 ◽  
Author(s):  
J. M. Qualy ◽  
T. C. Westfall

The relationship between age and central noradrenergic neuronal activity of the paraventricular hypothalamic nucleus (PVH) was examined in 7- to 10-, 12- to 14-, and 30- to 36-wk-old Sprague-Dawley (SD), Wistar-Kyoto (WKY), and spontaneously hypertensive rats (SHR). As an index of noradrenergic activity, endogenous norepinephrine (NE) overflow was assessed utilizing a miniaturized push-pull cannula assembly in unanesthetized freely moving rats. NE overlow under basal, 56 mM K+ stimulation, and in response to pressor/depressor drugs, were examined in all three strains at all ages. Significant increases in basal and K(+)-stimulated overflow of endogenous NE from the PVH were observed in all ages of SHR compared with normotensive controls with the greatest percent increase occurring during the development of hypertension in SHR. In addition, a reciprocal relationship exists with respect to blood pressure and overflow of NE from the PVH such that increases/decreases in blood pressure elicit decreases/increases in NE overflow in all strains at all ages examined. However, developing hypertensive SHR exhibited attenuated decreases in overflow of NE from the PVH compared with age-matched controls and established hypertensive SHR. These results suggest that noradrenergic pathways of the PVH contribute to the development and maintenance of arterial pressure hemostasis and that enhanced central noradrenergic neuronal activity is greatest during the development of hypertension in SHR.


2008 ◽  
Vol 444 (2) ◽  
pp. 199-202 ◽  
Author(s):  
Miguel Condés-Lara ◽  
Guadalupe Martínez-Lorenzana ◽  
Javier Rodríguez-Jiménez ◽  
Gerardo Rojas-Piloni

Sign in / Sign up

Export Citation Format

Share Document