scholarly journals The Effects of Cold Water Immersion and Active Recovery on Molecular Factors That Regulate Growth and Remodeling of Skeletal Muscle After Resistance Exercise

2020 ◽  
Vol 11 ◽  
Author(s):  
Jonathan M. Peake ◽  
James F. Markworth ◽  
Kristoffer Toldnes Cumming ◽  
Sigve N. Aas ◽  
Llion A. Roberts ◽  
...  
2016 ◽  
Vol 595 (3) ◽  
pp. 695-711 ◽  
Author(s):  
Jonathan M. Peake ◽  
Llion A. Roberts ◽  
Vandre C. Figueiredo ◽  
Ingrid Egner ◽  
Simone Krog ◽  
...  

2015 ◽  
Vol 309 (4) ◽  
pp. R389-R398 ◽  
Author(s):  
Llion A. Roberts ◽  
Makii Muthalib ◽  
Jamie Stanley ◽  
Glen Lichtwark ◽  
Kazunori Nosaka ◽  
...  

Cold water immersion (CWI) and active recovery (ACT) are frequently used as postexercise recovery strategies. However, the physiological effects of CWI and ACT after resistance exercise are not well characterized. We examined the effects of CWI and ACT on cardiac output (Q̇), muscle oxygenation (SmO2), blood volume (tHb), muscle temperature (Tmuscle), and isometric strength after resistance exercise. On separate days, 10 men performed resistance exercise, followed by 10 min CWI at 10°C or 10 min ACT (low-intensity cycling). Q̇ (7.9 ± 2.7 l) and Tmuscle (2.2 ± 0.8°C) increased, whereas SmO2 (−21.5 ± 8.8%) and tHb (−10.1 ± 7.7 μM) decreased after exercise ( P < 0.05). During CWI, Q̇ (−1.1 ± 0.7 l) and Tmuscle (−6.6 ± 5.3°C) decreased, while tHb (121 ± 77 μM) increased ( P < 0.05). In the hour after CWI, Q̇ and Tmuscle remained low, while tHb also decreased ( P < 0.05). By contrast, during ACT, Q̇ (3.9 ± 2.3 l), Tmuscle (2.2 ± 0.5°C), SmO2 (17.1 ± 5.7%), and tHb (91 ± 66 μM) all increased ( P < 0.05). In the hour after ACT, Tmuscle, and tHb remained high ( P < 0.05). Peak isometric strength during 10-s maximum voluntary contractions (MVCs) did not change significantly after CWI, whereas it decreased after ACT (−30 to −45 Nm; P < 0.05). Muscle deoxygenation time during MVCs increased after ACT ( P < 0.05), but not after CWI. Muscle reoxygenation time after MVCs tended to increase after CWI ( P = 0.052). These findings suggest first that hemodynamics and muscle temperature after resistance exercise are dependent on ambient temperature and metabolic demands with skeletal muscle, and second, that recovery of strength after resistance exercise is independent of changes in hemodynamics and muscle temperature.


2014 ◽  
Vol 307 (8) ◽  
pp. R998-R1008 ◽  
Author(s):  
Llion A. Roberts ◽  
Kazunori Nosaka ◽  
Jeff S. Coombes ◽  
Jonathan M. Peake

We investigated the effect of cold water immersion (CWI) on the recovery of muscle function and physiological responses after high-intensity resistance exercise. Using a randomized, cross-over design, 10 physically active men performed high-intensity resistance exercise followed by one of two recovery interventions: 1) 10 min of CWI at 10°C or 2) 10 min of active recovery (low-intensity cycling). After the recovery interventions, maximal muscle function was assessed after 2 and 4 h by measuring jump height and isometric squat strength. Submaximal muscle function was assessed after 6 h by measuring the average load lifted during 6 sets of 10 squats at 80% of 1 repetition maximum. Intramuscular temperature (1 cm) was also recorded, and venous blood samples were analyzed for markers of metabolism, vasoconstriction, and muscle damage. CWI did not enhance recovery of maximal muscle function. However, during the final three sets of the submaximal muscle function test, participants lifted a greater load ( P < 0.05, Cohen's effect size: 1.3, 38%) after CWI compared with active recovery. During CWI, muscle temperature decreased ∼7°C below postexercise values and remained below preexercise values for another 35 min. Venous blood O2 saturation decreased below preexercise values for 1.5 h after CWI. Serum endothelin-1 concentration did not change after CWI, whereas it decreased after active recovery. Plasma myoglobin concentration was lower, whereas plasma IL-6 concentration was higher after CWI compared with active recovery. These results suggest that CWI after resistance exercise allows athletes to complete more work during subsequent training sessions, which could enhance long-term training adaptations.


2019 ◽  
Vol 127 (5) ◽  
pp. 1403-1418 ◽  
Author(s):  
Jackson J. Fyfe ◽  
James R. Broatch ◽  
Adam J. Trewin ◽  
Erik D. Hanson ◽  
Christos K. Argus ◽  
...  

We determined the effects of cold water immersion (CWI) on long-term adaptations and post-exercise molecular responses in skeletal muscle before and after resistance training. Sixteen men (22.9 ± 4.6 y; 85.1 ± 17.9 kg; mean ± SD) performed resistance training (3 day/wk) for 7 wk, with each session followed by either CWI [15 min at 10°C, CWI (COLD) group, n = 8] or passive recovery (15 min at 23°C, control group, n = 8). Exercise performance [one-repetition maximum (1-RM) leg press and bench press, countermovement jump, squat jump, and ballistic push-up], body composition (dual X-ray absorptiometry), and post-exercise (i.e., +1 and +48 h) molecular responses were assessed before and after training. Improvements in 1-RM leg press were similar between groups [130 ± 69 kg, pooled effect size (ES): 1.53 ± 90% confidence interval (CI) 0.49], whereas increases in type II muscle fiber cross-sectional area were attenuated with CWI (−1,959 ± 1,675 µM2 ; ES: −1.37 ± 0.99). Post-exercise mechanistic target of rapamycin complex 1 signaling (rps6 phosphorylation) was blunted for COLD at post-training (POST) +1 h (−0.4-fold, ES: −0.69 ± 0.86) and POST +48 h (−0.2-fold, ES: −1.33 ± 0.82), whereas basal protein degradation markers (FOX-O1 protein content) were increased (1.3-fold, ES: 2.17 ± 2.22). Training-induced increases in heat shock protein (HSP) 27 protein content were attenuated for COLD (−0.8-fold, ES: −0.94 ± 0.82), which also reduced total HSP72 protein content (−0.7-fold, ES: −0.79 ± 0.57). CWI blunted resistance training-induced muscle fiber hypertrophy, but not maximal strength, potentially via reduced skeletal muscle protein anabolism and increased catabolism. Post-exercise CWI should therefore be avoided if muscle hypertrophy is desired. NEW & NOTEWORTHY This study adds to existing evidence that post-exercise cold water immersion attenuates muscle fiber growth with resistance training, which is potentially mediated by attenuated post-exercise increases in markers of skeletal muscle anabolism coupled with increased catabolism and suggests that blunted muscle fiber growth with cold water immersion does not necessarily translate to impaired strength development.


2015 ◽  
Vol 24 (2) ◽  
pp. 99-108 ◽  
Author(s):  
Adam R. Jajtner ◽  
Jay R. Hoffman ◽  
Adam M. Gonzalez ◽  
Phillip R. Worts ◽  
Maren S. Fragala ◽  
...  

Context:Resistance training is a common form of exercise for competitive and recreational athletes. Enhancing recovery from resistance training may improve the muscle-remodeling processes, stimulating a faster return to peak performance.Objective:To examine the effects of 2 different recovery modalities, neuromuscular electrical stimulation (NMES) and cold-water immersion (CWI), on performance and biochemical and ultrasonographic measures.Participants:Thirty resistance-trained men (23.1 ± 2.9 y, 175.2 ± 7.1 cm, 82.1 ± 8.4 kg) were randomly assigned to NMES, CWI, or control (CON).Design and Setting:All participants completed a high-volume lower-body resistance-training workout on d 1 and returned to the human performance laboratory 24 (24H) and 48 h (48H) postexercise for follow-up testing.Measures:Blood samples were obtained preexercise (PRE) and immediately (IP), 30 min (30P), 24 h (24H), and 48 h (48H) post. Subjects were examined for performance changes in the squat exercise (total repetitions and average power per repetition), biomarkers of inflammation, and changes in cross-sectional area and echo intensity (EI) of the rectus femoris (RF) and vastus lateralis muscles.Results:No differences between groups were observed in the number of repetitions (P = .250; power: P = .663). Inferential-based analysis indicated that increases in C-reactive protein concentrations were likely increased by a greater magnitude after CWI compared with CON, while NMES possibly decreased more than CON from IP to 24H. Increases in interleukin-10 concentrations between IP and 30P were likely greater in CWI than NMES but not different from CON. Inferential-based analysis of RF EI indicated a likely decrease for CWI between IP and 48H. No other differences between groups were noted in any other muscle-architecture measures.Conclusions:Results indicated that CWI induced greater increases in pro- and anti-inflammatory markers, while decreasing RF EI, suggesting that CWI may be effective in enhancing short-term muscle recovery after high-volume bouts of resistance exercise.


2011 ◽  
Vol 90 (5) ◽  
pp. 356-363 ◽  
Author(s):  
Juan Manuel García-Manso ◽  
Darío Rodríguez-Matoso ◽  
David Rodríguez-Ruiz ◽  
Samuel Sarmiento ◽  
Yves de Saa ◽  
...  

2013 ◽  
Vol 115 (9) ◽  
pp. 1324-1331 ◽  
Author(s):  
Kevin De Pauw ◽  
Bart Roelands ◽  
Uroš Marušič ◽  
Helio Fernandez Tellez ◽  
Kristel Knaepen ◽  
...  

The aim of this study was to determine the effect of prolonged intensive cycling and postexercise recovery in the heat on brain sources of altered brain oscillations. After a max test and familiarization trial, nine trained male subjects (23 ± 3 yr; maximal oxygen uptake = 62.1 ± 5.3 ml·min−1·kg−1) performed three experimental trials in the heat (30°C; relative humidity 43.7 ± 5.6%). Each trial consisted of two exercise tasks separated by 1 h. The first was a 60-min constant-load trial, followed by a 30-min simulated time trial (TT1). The second comprised a 12-min simulated time trial (TT2). After TT1, active recovery (AR), passive rest (PR), or cold water immersion (CWI) was applied for 15 min. Electroencephalography was measured at baseline and during postexercise recovery. Standardized low-resolution brain electromagnetic tomography was applied to accurately pinpoint and localize altered electrical neuronal activity. After CWI, PR and AR subjects completed TT2 in 761 ± 42, 791 ± 76, and 794 ± 62 s, respectively. A prolonged intensive cycling performance in the heat decreased β activity across the whole brain. Postexercise AR and PR elicited no significant electrocortical differences, whereas CWI induced significantly increased β3 activity in Brodmann areas (BA) 13 (posterior margin of insular cortex) and BA 40 (supramarginal gyrus). Self-paced prolonged exercise in the heat seems to decrease β activity, hence representing decreased arousal. Postexercise CWI increased β3 activity at BA 13 and 40, brain areas involved in somatosensory information processing.


2020 ◽  
Author(s):  
VL Wyckelsma ◽  
T Venckunas ◽  
PJ Houweling ◽  
M Schlittler ◽  
VM Lauschke ◽  
...  

ABSTRACTThe fast skeletal muscle protein α-actinin-3 is absent in 1.5 billion people worldwide due to homozygosity for a nonsense polymorphism in the ACTN3 gene (R577X) 1. The prevalence of the 577X allele increased as modern humans moved to colder climates, suggesting a link between α-actinin-3 deficiency and improved cold tolerance 1,2. Here, we show that humans lacking α-actinin-3 (XX) are superior in maintaining core body temperature during cold-water immersion due to changes in skeletal muscle thermogenesis. Muscles of XX individuals displayed a shift towards more slow-twitch isoforms of myosin heavy chain (MyHC) and sarcoplasmic reticulum (SR) proteins, accompanied by altered neuronal muscle activation resulting in increased tone rather than overt shivering 3,4. Experiments on Actn3 knockout mice showed no alterations in brown adipose tissue (BAT) properties that could explain the improved cold tolerance in XX individuals. Thus, this study provides a clear mechanism for the positive selection of the ACTN3 X-allele in cold climates and supports a key thermogenic role of skeletal muscle during cold exposure in humans.


Sign in / Sign up

Export Citation Format

Share Document