scholarly journals The effect of active recovery, cold water immersion and passive recovery on subsequent knee extension and flexion strength

Acta Gymnica ◽  
2012 ◽  
Vol 42 (3) ◽  
pp. 39-47
Author(s):  
Barbora Strejcova ◽  
Renata Konopkova
2020 ◽  
Vol 45 (3) ◽  
pp. 251-257
Author(s):  
Daryl M.G. Hurrie ◽  
Gordon G. Giesbrecht

High-intensity exercise is impaired by increased esophageal temperature (Tes) above 38 °C and/or decreased muscle temperature. We compared the effects of three 30-min recovery strategies following a first set of three 30-s Wingate tests (set 1), on a similar postrecovery set of Wingate tests (set 2). Recovery conditions were passive recovery in thermoneutral (34 °C) water (Passive-TN) and active recovery (underwater cycling; ∼33% maximum power) in thermoneutral (Active-TN) or cold (15 °C) water (Active-C). Tes rose for all conditions by the end of set 1 (∼1.0 °C). After recovery, Tes returned to baseline in both Active-C and Passive-TN but remained elevated in Active-TN (p < 0.05). At the end of set 2, Tes was lower in Active-C (37.2 °C) than both Passive-TN (38.1 °C) and Active-TN (38.8 °C) (p < 0.05). From set 1 to 2 mean power did not change with Passive-TN (+0.2%), increased with Active-TN (+2.4%; p < 0.05), and decreased with Active-C (–3.2%; p < 0.05). Heart rate was similar between conditions throughout, except at end-recovery; it was lower in Passive-TN (92 beats·min−1) than both exercise conditions (Active-TN, 126 beats·min−1; Active-C, 116 beats·min−1) (p < 0.05). Although Active-C significantly reduced Tes, the best postrecovery performance occurred with Active-TN. Novelty An initial set of 3 Wingates increased Tes to ∼38 °C. Thirty minutes of Active-C was well tolerated, and decreased Tes and blood lactate to baseline values, but decreased subsequent Wingate performance.


2015 ◽  
Vol 309 (4) ◽  
pp. R389-R398 ◽  
Author(s):  
Llion A. Roberts ◽  
Makii Muthalib ◽  
Jamie Stanley ◽  
Glen Lichtwark ◽  
Kazunori Nosaka ◽  
...  

Cold water immersion (CWI) and active recovery (ACT) are frequently used as postexercise recovery strategies. However, the physiological effects of CWI and ACT after resistance exercise are not well characterized. We examined the effects of CWI and ACT on cardiac output (Q̇), muscle oxygenation (SmO2), blood volume (tHb), muscle temperature (Tmuscle), and isometric strength after resistance exercise. On separate days, 10 men performed resistance exercise, followed by 10 min CWI at 10°C or 10 min ACT (low-intensity cycling). Q̇ (7.9 ± 2.7 l) and Tmuscle (2.2 ± 0.8°C) increased, whereas SmO2 (−21.5 ± 8.8%) and tHb (−10.1 ± 7.7 μM) decreased after exercise ( P < 0.05). During CWI, Q̇ (−1.1 ± 0.7 l) and Tmuscle (−6.6 ± 5.3°C) decreased, while tHb (121 ± 77 μM) increased ( P < 0.05). In the hour after CWI, Q̇ and Tmuscle remained low, while tHb also decreased ( P < 0.05). By contrast, during ACT, Q̇ (3.9 ± 2.3 l), Tmuscle (2.2 ± 0.5°C), SmO2 (17.1 ± 5.7%), and tHb (91 ± 66 μM) all increased ( P < 0.05). In the hour after ACT, Tmuscle, and tHb remained high ( P < 0.05). Peak isometric strength during 10-s maximum voluntary contractions (MVCs) did not change significantly after CWI, whereas it decreased after ACT (−30 to −45 Nm; P < 0.05). Muscle deoxygenation time during MVCs increased after ACT ( P < 0.05), but not after CWI. Muscle reoxygenation time after MVCs tended to increase after CWI ( P = 0.052). These findings suggest first that hemodynamics and muscle temperature after resistance exercise are dependent on ambient temperature and metabolic demands with skeletal muscle, and second, that recovery of strength after resistance exercise is independent of changes in hemodynamics and muscle temperature.


2013 ◽  
Vol 115 (9) ◽  
pp. 1324-1331 ◽  
Author(s):  
Kevin De Pauw ◽  
Bart Roelands ◽  
Uroš Marušič ◽  
Helio Fernandez Tellez ◽  
Kristel Knaepen ◽  
...  

The aim of this study was to determine the effect of prolonged intensive cycling and postexercise recovery in the heat on brain sources of altered brain oscillations. After a max test and familiarization trial, nine trained male subjects (23 ± 3 yr; maximal oxygen uptake = 62.1 ± 5.3 ml·min−1·kg−1) performed three experimental trials in the heat (30°C; relative humidity 43.7 ± 5.6%). Each trial consisted of two exercise tasks separated by 1 h. The first was a 60-min constant-load trial, followed by a 30-min simulated time trial (TT1). The second comprised a 12-min simulated time trial (TT2). After TT1, active recovery (AR), passive rest (PR), or cold water immersion (CWI) was applied for 15 min. Electroencephalography was measured at baseline and during postexercise recovery. Standardized low-resolution brain electromagnetic tomography was applied to accurately pinpoint and localize altered electrical neuronal activity. After CWI, PR and AR subjects completed TT2 in 761 ± 42, 791 ± 76, and 794 ± 62 s, respectively. A prolonged intensive cycling performance in the heat decreased β activity across the whole brain. Postexercise AR and PR elicited no significant electrocortical differences, whereas CWI induced significantly increased β3 activity in Brodmann areas (BA) 13 (posterior margin of insular cortex) and BA 40 (supramarginal gyrus). Self-paced prolonged exercise in the heat seems to decrease β activity, hence representing decreased arousal. Postexercise CWI increased β3 activity at BA 13 and 40, brain areas involved in somatosensory information processing.


2020 ◽  
Vol 11 ◽  
Author(s):  
Jonathan M. Peake ◽  
James F. Markworth ◽  
Kristoffer Toldnes Cumming ◽  
Sigve N. Aas ◽  
Llion A. Roberts ◽  
...  

2019 ◽  
Vol 9 ◽  
Author(s):  
Elvis de Souza Malta ◽  
Fabio Santos de Lira ◽  
Fabiana Andrade Machado ◽  
Anderson Saranz Zago ◽  
Sandra Lia do Amaral ◽  
...  

2018 ◽  
Vol 314 (6) ◽  
pp. R824-R833 ◽  
Author(s):  
Randall F. D’Souza ◽  
Nina Zeng ◽  
James F. Markworth ◽  
Vandre C. Figueiredo ◽  
Llion A. Roberts ◽  
...  

Resistance training (RT) increases muscle fiber size and induces angiogenesis to maintain capillary density. Cold water immersion (CWI), a common postexercise recovery modality, may improve acute recovery, but it attenuates muscle hypertrophy compared with active recovery (ACT). It is unknown if CWI following RT alters muscle fiber type expression or angiogenesis. Twenty-one men strength trained for 12 wk, with either 10 min of CWI ( n = 11) or ACT ( n = 10) performed following each session. Vastus lateralis biopsies were collected at rest before and after training. Type IIx myofiber percent decreased ( P = 0.013) and type IIa myofiber percent increased with training ( P = 0.012), with no difference between groups. The number of capillaries per fiber increased from pretraining in the CWI group ( P = 0.004) but not the ACT group ( P = 0.955). Expression of myosin heavy chain genes ( MYH1 and MYH2), encoding type IIx and IIa fibers, respectively, decreased in the ACT group, whereas MYH7 (encoding type I fibers) increased in the ACT group versus CWI ( P = 0.004). Myosin heavy chain IIa protein increased with training ( P = 0.012) with no difference between groups. The proangiogenic vascular endothelial growth factor protein decreased posttraining in the ACT group versus CWI ( P < 0.001), whereas antiangiogenic Sprouty-related, EVH1 domain-containing protein 1 protein increased with training in both groups ( P = 0.015). Expression of microRNAs that regulate muscle fiber type (miR-208b and -499a) and angiogenesis (miR-15a, -16, and -126) increased only in the ACT group ( P < 0.05). CWI recovery after each training session altered the angiogenic and fiber type-specific response to RT through regulation at the levels of microRNA, gene, and protein expression.


2016 ◽  
Vol 51 (6) ◽  
pp. 500-501 ◽  
Author(s):  
Emma A. Nye ◽  
Jessica R. Edler ◽  
Lindsey E. Eberman ◽  
Kenneth E. Games

Reference: Zhang Y, Davis JK, Casa DJ, Bishop PA. Optimizing cold water immersion for exercise-induced hyperthermia: a meta-analysis. Med Sci Sports Exerc. 2015;47(11):2464−2472. Clinical Questions: Do optimal procedures exist for implementing cold-water immersion (CWI) that yields high cooling rates for hyperthermic individuals? Data Sources: One reviewer performed a literature search using PubMed and Web of Science. Search phrases were cold water immersion, forearm immersion, ice bath, ice water immersion, immersion, AND cooling. Study Selection: Studies were included based on the following criteria: (1) English language, (2) full-length articles published in peer-reviewed journals, (3) healthy adults subjected to exercise-induced hyperthermia, and (4) reporting of core temperature as 1 outcome measure. A total of 19 studies were analyzed. Data Extraction: Pre-immersion core temperature, immersion water temperature, ambient temperature, immersion duration, and immersion level were coded a priori for extraction. Data originally reported in graphical form were digitally converted to numeric values. Mean differences comparing the cooling rates of CWI with passive recovery, standard deviation of change from baseline core temperature, and within-subjects r were extracted. Two independent reviewers used the Physiotherapy Evidence Database (PEDro) scale to assess the risk of bias. Main Results: Cold-water immersion increased the cooling rate by 0.03°C/min (95% confidence interval [CI] = 0.03, 0.04°C/min) compared with passive recovery. Cooling rates were more effective when the pre-immersion core temperature was ≥38.6°C (P = .023), immersion water temperature was ≤10°C (P = .036), ambient temperature was ≥20°C (P = .013), or immersion duration was ≤10 minutes (P &lt; .001). Cooling rates for torso and limb immersion (mean difference = 0.04°C/min, 95% CI = 0.03, 0.06°C/min) were higher (P = .028) than those for forearm and hand immersion (mean difference = 0.01°C/min, 95% CI = −0.01, 0.04°C/min). Conclusions: Hyperthermic individuals were cooled twice as fast by CWI as by passive recovery. Therefore, the former method is the preferred choice when treating patients with exertional heat stroke. Water temperature should be &lt;10°C, with the torso and limbs immersed. Insufficient published evidence supports CWI of the forearms and hands.


2019 ◽  
Vol 11 (1) ◽  
pp. 189-192
Author(s):  
Ritva S. Taipale ◽  
Johanna K. Ihalainen ◽  
Phillip J. Jones ◽  
Antti A. Mero ◽  
Keijo Häkkinen ◽  
...  

SummaryStudy aim: The purpose of this study was to compare the effects of cold-water immersion (CWI) vs. active recovery performed after each individual strength and endurance training session over a 10-week period of high-intensity combined strength and endurance training.Materials and methods: Seventeen healthy men completed 10 weeks of high-intensity combined strength and endurance training. One group (AR, n = 10) completed active recovery that included 15 minutes of running at 30–40% VO2max after every strength training session while the other group (CWI, n = 7) completed 5 minutes of active recovery (at the same intensity as the AR group) followed by 10 minutes of cold-water (12 ± 1°C) immersion. During CWI, the subjects were seated passively during the 10 minutes of cold-water immersion and the water level remained just below the pectoral muscles. Muscle strength and power were measured by isometric bilateral, 1 repetition maximum, leg press (ISOM LP) and countermovement jump (CMJ) height. Endurance performance was measured by a 3000 m running time trial. Serum testosterone, cortisol, and IGF-1 were assessed from venous blood samples.Results: ISOM LP and CMJ increased significantly over the training period, but 3000 m running time increased only marginally. Serum testosterone, cortisol, and IGF-1 remained unchanged over the intervention period. No differences between the groups were observed.Conclusions: AR and CWI were equally effective during 10 weeks of high-intensity combined strength and endurance training. Thus, physically active individuals participating in high-intensity combined strength and endurance training should use the recovery method they prefer.


2014 ◽  
Vol 307 (8) ◽  
pp. R998-R1008 ◽  
Author(s):  
Llion A. Roberts ◽  
Kazunori Nosaka ◽  
Jeff S. Coombes ◽  
Jonathan M. Peake

We investigated the effect of cold water immersion (CWI) on the recovery of muscle function and physiological responses after high-intensity resistance exercise. Using a randomized, cross-over design, 10 physically active men performed high-intensity resistance exercise followed by one of two recovery interventions: 1) 10 min of CWI at 10°C or 2) 10 min of active recovery (low-intensity cycling). After the recovery interventions, maximal muscle function was assessed after 2 and 4 h by measuring jump height and isometric squat strength. Submaximal muscle function was assessed after 6 h by measuring the average load lifted during 6 sets of 10 squats at 80% of 1 repetition maximum. Intramuscular temperature (1 cm) was also recorded, and venous blood samples were analyzed for markers of metabolism, vasoconstriction, and muscle damage. CWI did not enhance recovery of maximal muscle function. However, during the final three sets of the submaximal muscle function test, participants lifted a greater load ( P < 0.05, Cohen's effect size: 1.3, 38%) after CWI compared with active recovery. During CWI, muscle temperature decreased ∼7°C below postexercise values and remained below preexercise values for another 35 min. Venous blood O2 saturation decreased below preexercise values for 1.5 h after CWI. Serum endothelin-1 concentration did not change after CWI, whereas it decreased after active recovery. Plasma myoglobin concentration was lower, whereas plasma IL-6 concentration was higher after CWI compared with active recovery. These results suggest that CWI after resistance exercise allows athletes to complete more work during subsequent training sessions, which could enhance long-term training adaptations.


Sign in / Sign up

Export Citation Format

Share Document