scholarly journals CSF3 Is a Potential Drug Target for the Treatment of COVID-19

2021 ◽  
Vol 11 ◽  
Author(s):  
Chao Fang ◽  
Jie Mei ◽  
Huixiang Tian ◽  
Yu-Ligh Liou ◽  
Dingchao Rong ◽  
...  

Coronavirus Disease 2019 (COVID-19) is an acute respiratory infectious disease that appeared at the end of 2019. As of July 2020, the cumulative number of infections and deaths have exceeded 15 million and 630,000, respectively. And new cases are increasing. There are still many difficulties surrounding research on the mechanism and development of therapeutic vaccines. It is urgent to explore the pathogenic mechanism of viruses to help prevent and treat COVID-19. In our study, we downloaded two datasets related to COVID-19 (GSE150819 and GSE147507). By analyzing the high-throughput expression matrix of uninfected human bronchial organoids and infected human bronchial organoids in the GSE150819, 456 differentially expressed genes (DEGs) were identified, which were mainly enriched in the cytokine–cytokine receptor interaction pathway and so on. We also constructed the protein–protein interaction (PPI) network of DEGs to identify the hub genes. Then we analyzed GSE147507, which contained lung adenocarcinoma cell lines (A549 and Calu3) and the primary bronchial epithelial cell line (NHBE), obtaining 799, 460, and 46 DEGs, respectively. The results showed that in human bronchial organoids, A549, Calu3, and NHBE samples infected with SARS-CoV-2, only one upregulated gene CSF3 was identified. Interestingly, CSF3 is one of the hub genes we previously screened in GSE150819, suggesting that CSF3 may be a potential drug target. Further, we screened potential drugs targeting CSF3 by MOE; the top 50 drugs were screened by flexible docking and rigid docking, with 37 intersections. Two antiviral drugs (Elbasvir and Ritonavir) were included; Elbasvir and Ritonavir formed van der Waals (VDW) interactions with surrounding residues to bind with CSF3, and Elbasvir and Ritonavir significantly inhibited CSF3 protein expression.

2013 ◽  
Vol 19 (14) ◽  
pp. 2637-2648 ◽  
Author(s):  
Ana Serrano ◽  
Patricia Ferreira ◽  
Marta Martinez-Julvez ◽  
Milagros Medina

2019 ◽  
Vol 20 (3) ◽  
pp. 292-301 ◽  
Author(s):  
Lalit Kumar Gautam ◽  
Prince Sharma ◽  
Neena Capalash

Bacterial infections have always been an unrestrained challenge to the medical community due to the rise of multi-drug tolerant and resistant strains. Pioneering work on Escherichia coli polyphosphate kinase (PPK) by Arthur Kornberg has generated great interest in this polyphosphate (PolyP) synthesizing enzyme. PPK has wide distribution among pathogens and is involved in promoting pathogenesis, stress management and susceptibility to antibiotics. Further, the absence of a PPK orthologue in humans makes it a potential drug target. This review covers the functional and structural aspects of polyphosphate kinases in bacterial pathogens. A description of molecules being designed against PPKs has been provided, challenges associated with PPK inhibitor design are highlighted and the strategies to enable development of efficient drug against this enzyme have also been discussed.


2011 ◽  
Vol 8 (4) ◽  
pp. 363-370 ◽  
Author(s):  
Lakshminarayanan Karthik ◽  
Palayam Malathy ◽  
Annie Trinitta ◽  
Krishnasamy Gunasekaran

2021 ◽  
Author(s):  
Nattawadee Panyain ◽  
Aurélien Godinat ◽  
Aditya Raymond Thawani ◽  
Sofía Lachiondo-Ortega ◽  
Katie Mason ◽  
...  

Ubiquitin carboxy-terminal hydrolase L1 (UCHL1), a deubiquitinating enzyme (DUB), is a potential drug target in various cancers, and liver and lung fibrosis. However, bona fide functions and substrates of UCHL1...


2014 ◽  
Vol 30 (7) ◽  
pp. 350-360 ◽  
Author(s):  
Amanda M. Goldston ◽  
Aabha I. Sharma ◽  
Kimberly S. Paul ◽  
David M. Engman

Sign in / Sign up

Export Citation Format

Share Document