scholarly journals GLUT4 in Mouse Endometrial Epithelium: Roles in Embryonic Development and Implantation

2021 ◽  
Vol 12 ◽  
Author(s):  
Yun Long ◽  
Yi-cheng Wang ◽  
Dong-zhi Yuan ◽  
Xin-hua Dai ◽  
Lin-chuan Liao ◽  
...  

GLUT4 is involved in rapid glucose uptake among various kinds of cells to contribute to glucose homeostasis. Prior data have reported that aberrant glucose metabolism by GLUT4 dysfunction in the uterus could be responsible for infertility and increased miscarriage. However, the expression and precise functions of GLUT4 in the endometrium under physiological conditions remain unknown or controversial. In this study, we observed that GLUT4 exhibits a spatiotemporal expression in mouse uterus on pregnant days 1–4; its expression especially increased on pregnant day 4 during the window of implantation. We also determined that estrogen, in conjunction with progesterone, promotes the expression of GLUT4 in the endometrial epithelium in vivo or in vitro. GLUT4 is an important transporter that mediates glucose transport in endometrial epithelial cells (EECs) in vitro or in vivo. In vitro, glucose uptake decreased in mouse EECs when the cells were treated with GLUT4 small interfering RNA (siRNA). In vivo, the injection of GLUT4-siRNA into one side of the mouse uterine horns resulted in an increased glucose concentration in the uterine fluid on pregnant day 4, although it was still lower than in blood, and impaired endometrial receptivity by inhibiting pinopode formation and the expressions of leukemia inhibitory factor (LIF) and integrin ανβ3, finally affecting embryonic development and implantation. Overall, the obtained results indicate that GLUT4 in the endometrial epithelium affects embryo development by altering glucose concentration in the uterine fluid. It can also affect implantation by impairing endometrial receptivity due to dysfunction of GLUT4.

Development ◽  
1987 ◽  
Vol 100 (3) ◽  
pp. 431-439 ◽  
Author(s):  
S.K. Ellington

The glucose metabolism and embryonic development of rat embryos during organogenesis was studied using embryo culture. Glucose uptake and embryonic growth and differentiation of 10.5-day explants (embryos + membranes) were limited by the decreasing glucose concentration, but not the increasing concentration of metabolites, in the culture media during the second 24 h of a 48 h culture. No such limitations were found on the embryonic development of 9.5-day explants during a 48 h culture although glucose uptake was slightly reduced at very low concentrations of glucose. From the head-fold stage to the 25-somite stage of development, glucose uptake was characteristic of the stage of development of the embryo and not the time it had been in culture. Embryonic growth of 9.5-day explants was similar to that previously observed in vivo. Glucose uptake by 9.5-day explants was dependent on the surface area of the yolk sac and was independent of the glucose concentration in the culture media (within the range of 9.4 to 2.5 mM). The proportion of glucose converted to lactate was 100% during the first 42h of culture then fell to about 50% during the final 6h. The protein contents of both the extraembryonic membranes and the embryo were dependent on the glucose uptake.


2019 ◽  
Vol 316 (4) ◽  
pp. E557-E567 ◽  
Author(s):  
Li Nie ◽  
You-bo Zhao ◽  
Dan Zhao ◽  
Yun Long ◽  
Yi Lei ◽  
...  

To investigate the role of progesterone-induced micro-RNA (miR)-152 in early embryonic development and implantation by regulating GLUT3 in endometrial epithelium, qRT-PCR was used to detect the expression of miR-152, GLUT1, and GLUT3 in the endometrial epithelial cells of female mice. GLUT1 and GLUT3 proteins were detected by immunohistochemical staining in the mouse endometrial epithelium. Bioinformatics prediction associated with a luciferase assay was performed to determine whether GLUT1 and GLUT3 are target genes of miR-152. Specific miR-152 mimics or inhibitors were transfected into the endometrial epithelial cells to, respectively, overexpress or downregulate miR-152. Next, the glucose concentration of uterine fluid was measured by conducting high-performance liquid chromatography in vivo, and the glucose uptake of the endometrial epithelial cells was observed using a fluorometric assay in vitro. Early embryonic development and implantation were also observed after the miR-152 mimics or inhibitors had been transfected. Embryo transfer was observed after the miR-152 mimic transfection. miR-152 was found to directly target and thereby downregulate GLUT3 expression. The expressions of both miR-152 and GLUT3 in the mouse endometrial epithelium had spatiotemporal characteristics on days 1–4 of pregnancy. miR-152 affected the glucose concentration of uterine fluid and the glucose uptake of endometrial epithelial cells. The transfection of specific miR-152 mimics led to impaired embryonic development and implantation. To conclude, in endometrial epithelial cells, progesterone-induced miR-152 downregulates GLUT3 at the posttranscriptional level to maintain a proper glucose concentration in the uterine fluid, which is necessary for early embryonic development and implantation.


INDIAN DRUGS ◽  
2018 ◽  
Vol 55 (02) ◽  
pp. 57-62
Author(s):  
M. A Bhutkar ◽  
◽  
S. D Bhinge ◽  
D. S. Randive ◽  
G. H Wadkar ◽  
...  

The present investigation was undertaken to assess the hypoglycemic potential of Caesalpinia bonducella (C.bonducella) and Myristica fragrans (M.fragrans), employing various in vitro techniques. The extracts of seeds of C. bonducella and M. fragrans were studied for their effects on glucose adsorption capacity, in vitro glucose diffusion, in vitro amylolysis kinetics and glucose transport across the yeast cells. It was observed that the plant extracts under study adsorbed glucose and the adsorption of glucose increased remarkably with an increase in glucose concentration. There were no significant (p≤0.05) differences between their adsorption capacities. The results of amylolysis kinetic experimental model revealed that the rate of glucose diffusion was found to be increased with time from 30 to 180 min and both the plant extracts demonstrated significant inhibitory effects on movement of glucose into external solution across dialysis membrane as compared to control. Also, the plant extracts promoted glucose uptake by the yeast cells. It was observed that the enhancement of glucose uptake was dependent on both the sample and glucose concentration. C. bonducella extract exhibited significantly higher (p≤0.05) activity than the extract of M. fragrans at all concentrations. The results of the study verified the hypoglycemic activity of the extracts of C. bonducella and M. fragrans. However, the observed effects exhibited by the extracts of seeds of C. bonducella and M. fragrans need to be confirmed by using different in vivo models and clinical trials for their effective utilization as therapeutic agents in better management of diabetes mellitus.


2021 ◽  
Vol 118 (15) ◽  
pp. e2026804118
Author(s):  
Constantine A. Simintiras ◽  
Pramod Dhakal ◽  
Chaman Ranjit ◽  
Harriet C. Fitzgerald ◽  
Ahmed Z. Balboula ◽  
...  

Suboptimal uterine fluid (UF) composition can lead to pregnancy loss and likely contributes to offspring susceptibility to chronic adult-onset disorders. However, our understanding of the biochemical composition and mechanisms underpinning UF formation and regulation remain elusive, particularly in humans. To address this challenge, we developed a high-throughput method for intraorganoid fluid (IOF) isolation from human endometrial epithelial organoids. The IOF is biochemically distinct to the extraorganoid fluid (EOF) and cell culture medium as evidenced by the exclusive presence of 17 metabolites in IOF. Similarly, 69 metabolites were unique to EOF, showing asymmetrical apical and basolateral secretion by the in vitro endometrial epithelium, in a manner resembling that observed in vivo. Contrasting the quantitative metabolomic profiles of IOF and EOF revealed donor-specific biochemical signatures of organoids. Subsequent RNA sequencing of these organoids from which IOF and EOF were derived established the capacity to readily perform organoid multiomics in tandem, and suggests that transcriptomic regulation underpins the observed secretory asymmetry. In summary, these data provided by modeling uterine luminal and basolateral fluid formation in vitro offer scope to better understand UF composition and regulation with potential impacts on female fertility and offspring well-being.


2008 ◽  
Vol 149 (4) ◽  
pp. 153-159 ◽  
Author(s):  
Zsuzsanna Rácz ◽  
Péter Hamar

A genetikában új korszak kezdődött 17 éve, amikor a petúniában felfedezték a koszuppressziót. Később a koszuppressziót azonosították a növényekben és alacsonyabb rendű eukariótákban megfigyelt RNS-interferenciával (RNSi). Bár a növényekben ez ősi vírusellenes gazdaszervezeti védekezőmechanizmus, emlősökben az RNSi élettani szerepe még nincs teljesen tisztázva. Az RNSi-t rövid kettős szálú interferáló RNS-ek (short interfering RNA, siRNS) irányítják. A jelen cikkben összefoglaljuk az RNSi történetét és mechanizmusát, az siRNS-ek szerkezete és hatékonysága közötti összefüggéseket, a célsejtbe való bejuttatás virális és nem virális módjait. Az siRNS-ek klinikai alkalmazásának legfontosabb akadálya az in vivo alkalmazás. Bár a hidrodinamikus kezelés állatokban hatékony, embereknél nem alkalmazható. Lehetőséget jelent viszont a szervspecifikus katéterezés. A szintetizált siRNS-ek ismert mellékhatásait szintén tárgyaljuk. Bár a génterápia ezen új területén számos problémával kell szembenézni, a sikeres in vitro és in vivo kísérletek reményt jelentenek emberi betegségek siRNS-sel történő kezelésére.


2006 ◽  
Vol 173 (2) ◽  
pp. 241-251 ◽  
Author(s):  
Malika Ahras ◽  
Grant P. Otto ◽  
Sharon A. Tooze

In neuroendocrine PC12 cells, immature secretory granules (ISGs) mature through homotypic fusion and membrane remodeling. We present evidence that the ISG-localized synaptotagmin IV (Syt IV) is involved in ISG maturation. Using an in vitro homotypic fusion assay, we show that the cytoplasmic domain (CD) of Syt IV, but not of Syt I, VII, or IX, inhibits ISG homotypic fusion. Moreover, Syt IV CD binds specifically to ISGs and not to mature secretory granules (MSGs), and Syt IV binds to syntaxin 6, a SNARE protein that is involved in ISG maturation. ISG homotypic fusion was inhibited in vivo by small interfering RNA–mediated depletion of Syt IV. Furthermore, the Syt IV CD, as well as Syt IV depletion, reduces secretogranin II (SgII) processing by prohormone convertase 2 (PC2). PC2 is found mostly in the proform, suggesting that activation of PC2 is also inhibited. Granule formation, and the sorting of SgII and PC2 from the trans-Golgi network into ISGs and MSGs, however, is not affected. We conclude that Syt IV is an essential component for secretory granule maturation.


2018 ◽  
Vol 51 (1) ◽  
pp. 154-172 ◽  
Author(s):  
Fenglin Zhang ◽  
Jingjing Ye ◽  
Yingying Meng ◽  
Wei Ai ◽  
Han Su ◽  
...  

Background/Aims: It has been implicated that calcium supplementation is involved in reducing body weight/fat and improving glucose homeostasis. However, the underlying mechanisms are still not fully understood. Here, we investigated the effects of calcium supplementation on adipogenesis and glucose homeostasis in porcine bone marrow mesenchymal stem cells (pBMSCs) and high fat diet (HFD)-fed mice and explored the involved signaling pathways. Methods: In vitro, pBMSCs were treated with 4 mM extracellular calcium ([Ca2+]o) and/or 1 μM nifedipine, 0.1 μM BAPTA-AM, 1 μM KN-93, 50 nM wortmannin for 10 days. The intracellular calcium ([Ca2+]i) levels were measured using Fluo 3-AM by flow cytometry. The adipogenic differentiation of pBMSCs was determined by Oil Red-O staining and triglyceride assay. The expression of marker genes involved in adipogenesis (peroxisome proliferator activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα)) and glucose uptake (glucose transporter 4 (GLUT4)), as well as the activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and PI3K/Akt-FoxO1/AS160 signaling pathways were determined by Western blotting. Glucose uptake and utilization were examined using 2-NBDG assay and glucose content assay, respectively. In vivo, C57BL/6J male mice were fed a HFD (containing 1.2% calcium) without or with 0.6% (w/w) calcium chloride in drinking water for 13 weeks. The adipogenesis, glucose homeostasis and the involvement of CaMKII and PI3K/Akt signaling pathway were also assessed. Results: In vitro, [Ca2+]o stimulated pBMSCs adipogenesis by increasing [Ca2+]i level and activating CaMKII and PI3K/Akt-FoxO1 pathways. In addition, [Ca2+]o promoted glucose uptake/utilization by enhancing AS160 phosphorylation, GLUT4 expression and translocation. However, the stimulating effects of [Ca2+]o on pBMSCs adipogenesis and glucose uptake/utilization were abolished by L-VGCC blocker Nifedipine, [Ca2+]i chelator BAPTA-AM, CaMKII inhibitor KN-93, or PI3K inhibitor Wortmannin. In vivo, calcium supplementation decreased body weight and fat content, increased adipocyte number, and improved glucose homeostasis, with elevated PPARγ and GLUT4 expression and PI3K/Akt activation in iWAT. Conclusion: calcium supplementation enhanced adipogenesis and glucose uptake in pBMSCs, which was coincident with the increased adipocyte number and improved glucose homeostasis in HFD-fed mice, and was associated with activation of CaMKII and PI3K/Akt-FoxO1/AS160 pathways. These data provided a broader understanding of the mechanisms underlying calcium-induced body weight/fat loss and glycemic control.


2010 ◽  
Vol 42 (2) ◽  
pp. 310-316 ◽  
Author(s):  
Stephanie L. Pierce ◽  
William Kutschke ◽  
Rafael Cabeza ◽  
Sarah K. England

Transgenic and knockout mouse models have proven useful in the study of genes necessary for parturition—including genes that affect the timing and/or progression of labor contractions. However, taking full advantage of these models will require a detailed characterization of the contractile patterns in the mouse uterus. Currently the best methodology for this has been measurement of isometric tension in isolated muscle strips in vitro. However, this methodology does not provide a real-time measure of changes in uterine pressure over the course of pregnancy. Recent advances have opened the possibility of using radiotelemetric devices to more accurately and comprehensively study intrauterine pressure in vivo. We tested the effectiveness of this technology in the mouse, in both wild-type (WT) mice and a mouse model of defective parturition (SK3 channel-overexpressing mice), after surgical implant of telemetry transmitters into the uterine horn. Continuous recordings from day 18 of pregnancy through delivery revealed that WT mice typically deliver during the 12-h dark cycle after 19.5 days postcoitum. In these mice, intrauterine pressure gradually increases during this cycle, to threefold greater than that measured during the 12-h cycle before delivery. SK3-overexpressing mice, by contrast, exhibited lower intrauterine pressure over the same period. These results are consistent with the outcome of previous in vitro studies, and they indicate that telemetry is an accurate method for measuring uterine contraction, and hence parturition, in mice. The use of this technology will lead to important novel insights into changes in intrauterine pressure during the course of pregnancy.


Sign in / Sign up

Export Citation Format

Share Document