scholarly journals Expression Profiles and Functional Characterization of Chemosensory Protein 15 (HhalCSP15) in the Brown Marmorated Stink Bug Halyomorpha halys

2021 ◽  
Vol 12 ◽  
Author(s):  
Zehua Wang ◽  
Fan Yang ◽  
Ang Sun ◽  
Shuang Shan ◽  
Yongjun Zhang ◽  
...  

Chemosensory proteins (CSPs) have been identified in the sensory tissues of various insect species and are believed to be involved in chemical communication in insects. However, the physiological roles of CSPs in Halyomorpha halys, a highly invasive insect species, are rarely reported. Here, we focused on one of the antennal CSPs (HhalCSP15) and determined whether it was involved in olfactory perception. Reverse transcription PCR (RT-PCR) and quantitative real-time PCR (qRT-PCR) analysis showed that HhalCSP15 was enriched in nymph and male and female adult antennae, indicating its possible involvement in the chemosensory process. Fluorescence competitive binding assays revealed that three of 43 natural compounds showed binding abilities with HhalCSP15, including β-ionone (Ki=11.9±0.6μM), cis-3-hexen-1-yl benzoate (Ki=10.5±0.4μM), and methyl (2E,4E,6Z)-decatrienoate (EEZ-MDT; Ki=9.6±0.8μM). Docking analysis supported the experimental affinity for the three ligands. Additionally, the electrophysiological activities of the three ligands were further confirmed using electroantennography (EAG). EEZ-MDT is particularly interesting, as it serves as a kairomone when H. halys forages for host plants. We therefore conclude that HhalCSP15 might be involved in the detection of host-related volatiles. Our data provide a basis for further investigation of the physiological roles of CSPs in H. halys, and extend the olfactory function of CSPs in stink bugs.

2020 ◽  
Author(s):  
Xiya Zuo ◽  
Shixiang Wang ◽  
Wen Xiang ◽  
Huiru Yang ◽  
Muhammad Mobeen Tahir ◽  
...  

Abstract Background: Apple (Malus domestica Borkh.) is one of the most popular cultivated fruit crops in China. Apple floral transition is an important process but liable to be affected by various environmental factors. The 14-3-3 proteins are involved in regulating diverse biological processes in plants, and some 14-3-3 members play vital roles in flowering. However, little information was available about the 14-3-3 members in apple.Results: In the current study, we identified eighteen 14-3-3 gene family members from the apple genome database, designated MdGF14a to MdGF14r. The isoforms possess a conserved core region comprising nine antiparallel α-helices and divergent N and C termini. According to their structural and phylogenetic features, Md14-3-3 proteins could be classified into two major evolutionary branches, the epsilon (ɛ) group and the non-epsilon (non-ɛ) group. Moreover, expression profiles derived from transcriptome data and quantitative real-time reverse transcription PCR analysis showed diverse expression patterns of Md14-3-3 genes in various tissues and in response to different sugars and hormone treatments during the floral transition phase. Four Md14‑3-3 isoforms (MdGF14a, MdGF14d, MdGF14i, and MdGF14j) exhibiting prominent transcriptional responses to sugars and hormones were selected for further investigation. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation experiments showed that the four Md14-3-3 proteins interact with key floral integrators, MdTFL1 (TERMINAL FLOWER1) and MdFT (FLOWERING LOCUS T). Subcellular localization of four selected Md14-3-3 proteins demonstrated their localization in both the cytoplasm and nucleus.Conclusion: We identified the Md14-3-3s family in apple comprehensively. Certain Md14-3-3 genes are expressed predominantly during the apple floral transition stage, and may participate in the regulation of flowering through association with flower control genes. Our results provide a preliminary framework for further investigation into the roles of Md14-3-3s in floral transition.


2020 ◽  
Author(s):  
Xiya Zuo ◽  
Shixiang Wang ◽  
Wen Xiang ◽  
Huiru Yang ◽  
Muhammad Mobeen Tahir ◽  
...  

Abstract Background: Apple (Malus domestica Borkh.) is a popular cultivated fruit crop with high economic value in China. Apple floral transition is an important process but liable to be affected by various environmental factors. The 14-3-3 proteins are involved in regulating diverse biological processes in plants, and some 14-3-3 members play vital roles in flowering. However, little information was available about the 14-3-3 members in apple.Results: In the current study, we identified eighteen 14-3-3 gene family members from the apple genome database, designated MdGF14a to MdGF14r. The isoforms possess a conserved core region comprising nine antiparallel α-helices and divergent N and C termini. According to their structural and phylogenetic features, Md14-3-3 proteins could be classified into two major evolutionary branches, the epsilon (ɛ) group and the non-epsilon (non-ɛ) group. Moreover, expression profiles derived from transcriptome data and quantitative real-time reverse transcription PCR analysis showed diverse expression patterns of Md14-3-3 genes in various tissues and in response to different sugars and hormone treatments during the floral transition phase. Four Md14‑3-3 isoforms (MdGF14a, MdGF14d, MdGF14i, and MdGF14j) exhibiting prominent transcriptional responses to sugars and hormones were selected for further investigation. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation experiments showed that the four Md14-3-3 proteins interact with key floral integrators, MdTFL1 (TERMINAL FLOWER1) and MdFT (FLOWERING LOCUS T). Subcellular localization of four selected Md14-3-3 proteins demonstrated their localization in both the cytoplasm and nucleus.Conclusion: We identified the Md14-3-3s family in apple comprehensively. Certain Md14-3-3 genes are expressed predominantly during the apple floral transition stage, and may participate in the regulation of flowering through association with flower control genes. Our results provide a preliminary framework for further investigation into the roles of Md14-3-3s in floral transition.


2019 ◽  
Vol 86 (2) ◽  
Author(s):  
Ke Huang ◽  
Fan Gao ◽  
X. Chris Le ◽  
Fang-Jie Zhao

ABSTRACT The organoarsenical feed additive 4-hydroxy-3-nitrobenzenearsonic acid (roxarsone [ROX]) is widely used and released into the environment. We previously showed a two-step pathway of ROX transformation by Enterobacter sp. strain CZ-1 involving the reduction of ROX to 3-amino-4-hydroxyphenylarsonic acid (3-AHPAA) and the acetylation of 3-AHPAA to N-acetyl-4-hydroxy-m-arsanilic acid (N-AHPAA) (K. Huang, H. Peng, F. Gao, Q. Liu, et al., Environ Pollut 247:482–487, 2019, https://doi.org/10.1016/j.envpol.2019.01.076). In this study, we identified two nhoA genes (nhoA1 and nhoA2), encoding N-hydroxyarylamine O-acetyltransferases, as responsible for 3-AHPAA acetylation in Enterobacter sp. strain CZ-1. The results of genetic disruption and complementation showed that both nhoA genes are involved in ROX biotransformation and that nhoA1 is the major 3-AHPAA acetyltransferase gene. Quantitative reverse transcription-PCR analysis showed that the relative expression level of nhoA1 was 3-fold higher than that of nhoA2. Each of the recombinant NhoAs was overexpressed in Escherichia coli BL21 and homogenously purified as a dimer by affinity chromatography. Both purified NhoAs catalyzed acetyl coenzyme A-dependent 3-AHPAA acetylation. The Km values of 3-AHPAA for NhoA1 and NhoA2 were 151.5 and 428.3 μM, respectively. Site-directed mutagenesis experiments indicated that two conserved arginine and cysteine residues of each NhoA were necessary for their enzyme activities. IMPORTANCE Roxarsone (ROX) is an organoarsenic feed additive that has been widely used in poultry industries for growth promotion, coccidiosis control, and meat pigmentation improvement for more than 70 years. Most ROX is excreted in the litter and dispersed into the environment, where it is transformed by microbes into different arsenic-containing compounds. A major product of ROX transformation is N-acetyl-4-hydroxy-m-arsanilic acid (N-AHPAA), which is also used as a clinical drug for treating refractory bacterial vaginosis. Here, we report the cloning and functional characterization of two genes encoding N-hydroxyarylamine O-acetyltransferases, NhoA1 and NhoA2, in Enterobacter sp. strain CZ-1, which catalyze the acetylation of 3-amino-4-hydroxyphenylarsonic acid (3-AHPAA) formed by the reduction of ROX to N-AHPAA. This study provides new insights into the function of N-hydroxyarylamine O-acetyltransferase in the transformation of an important organoarsenic compound.


2020 ◽  
Vol 55 (4) ◽  
pp. 437-447
Author(s):  
Ted E. Cottrell ◽  
Rammohan R. Balusu ◽  
Edgar Vinson ◽  
Bryan Wilkins ◽  
Henry Y. Fadamiro ◽  
...  

Abstract Stink bugs (Hemiptera: Pentatomidae) are commonly monitored using pyramid traps baited with a pheromone. Initially, the pyramid traps were painted yellow and predominantly used to monitor native stink bug species. However, research studies involving the exotic Halyomorpha halys Stål (Hemiptera: Pentatomidae) now use pyramid traps that are black, not yellow. As H. halys moves across the southeastern United States, the use of a single trap, yellow or black, for monitoring and conducting research studies would be beneficial. Our objective was to compare black and yellow pyramid traps baited with a lure to determine if one was superior for trapping herbivorous stink bugs. This study was conducted at four locations, three in Alabama and one in Georgia, over 2 yr. Additionally, residual efficacy of the lure was measured via trap capture over 1-mo intervals. Our results showed that only when native stink bug species were combined, and only in 1 yr, were captures significantly affected by trap color. Capture of the exotic H. halys and the most abundant native species, Euschistus servus (Say), was not significantly affected by trap color. Trap capture was significantly affected by how long a lure was in a trap. The data from this study suggests that when traps are used in conjunction with a pheromone to monitor multiple species of adult stink bugs, especially native species, the yellow pyramid trap is favored.


2020 ◽  
Author(s):  
Xiya Zuo ◽  
Shixiang Wang ◽  
Wen Xiang ◽  
Huiru Yang ◽  
Muhammad Mobeen Tahir ◽  
...  

Abstract Background: Apple ( Malus domestica Borkh.) is one of the most popular cultivated fruit crops in China. Apple floral transition is an important process but liable to be affected by various environmental factors. The 14-3-3 proteins are involved in regulating diverse biological processes in plants, and some 14-3-3 members have been identified to play vital roles in flowering. However, little information was available about the 14-3-3 members in apple. Results: In the current study, we identified eighteen 14-3-3 gene family members from apple genome database, designated MdGF14a to MdGF14r . The isoforms possess a conserved core region composed of nine antiparallel α-helices and divergent N and C termini. According to their structural and phylogenetic features, Md14-3-3s classified into two major evolutionary branches, the epsilon (ɛ) group and the non-epsilon (non-ɛ) group. Moreover, expression profiles derived from transcriptome data and quantitative reverse-transcription PCR (qRT-PCR) analysis exhibited diverse expression patterns of Md14-3-3 genes in various tissues and in response to different sugars and hormones treatments during floral transition phase. Four Md14-3-3 isoforms ( MdGF14a , MdGF14d , MdGF14i and MdGF14j ) exhibiting prominent transcriptional responses to sugars and hormones were selected for further investigation. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation (BiFC) experiments showed that the four Md14-3-3 proteins interact with key floral integrators, MdTFL1 (TERMINAL FLOWER1) and MdFT (FLOWERING LOCUS T). Subcellular localization of four selected Md14-3-3 proteins demonstrated their localization in both the cytoplasm and nucleus. Conclusion: We comprehensively identified Md14-3-3s family in apple. Some Md14-3-3 genes are predominantly expressed during apple floral transition stage, and may participate in regulation of flowering through association with flower control genes. Our results provide a preliminary framework for further investigation into the roles of Md14-3-3s for floral transition.


2019 ◽  
Author(s):  
Xingrong Lu ◽  
Anqin Duan ◽  
Shasha liang ◽  
Xiaoya Ma ◽  
Chunying Pang ◽  
...  

Abstract Background: Collagens, as extracellular matrix molecules, support cells for structural integrity and a variety of other functions, thereby contribute to support mammary basic structure and development. However, little information on the identification and expression profiles in response to the mammary gland of the collagen family in buffalo (Bubalus Bubalis) has been reported. Results: A total of 128 buffalo collagen protein sequences corresponding to 45 collagen genes were identified and classified into six clusters based on their phylogenetic relationships, conserved motifs, and gene structure analyses. A transcription factor binding sites (TFBS) analysis inferred that a total of 142 TFBS were predicted within the buffalo collagens, suggesting that different collagen subfamilies harbored different TFBS and played a variety of functions involved in the mammary gland development and lactation. The identified collagen sequences were unequally distributed on 17 chromosomes, 103 of which were determined to be tandem duplicated genes. Transcriptome data and qRT-PCR analysis revealed the expression diversity of buffalo collagen genes in various tissues. Most of the identified collagen genes were significantly up-regulated at the early lactation, 6 collagens upregulated at the peak lactation, and only COL24A1 was up-regulated at the late lactation. Conclusions: The present study provides significant insights into the potential functions of collagen family in dairy buffalo and helps in the functional characterization for collagen genes in further research.


2020 ◽  
Author(s):  
Xiya Zuo ◽  
Shixiang Wang ◽  
Wen Xiang ◽  
Muhammad Mobeen Tahir ◽  
Huiru Yang ◽  
...  

Abstract Background: Apple ( Malus domestica Borkh.) is one of the most popular cultivated fruit crops in China. Apple floral transition is an important process but liable to be affected by various environmental factors. The 14-3-3 proteins are involved in regulating diverse biological processes in plants, and some 14-3-3 members have been identified to play vital roles in flowering. However, little information was available about the 14-3-3 members in apple. Results: In the current study, we identified eighteen 14-3-3 gene family members from apple genome database, designated MdGF14a to MdGF14r , 17 of them are transcribed. The isoforms possess a conserved core region composed of nine antiparallel α-helices and divergent N and C termini. According to their structural and phylogenetic features, Md14-3-3s classified into two major evolutionary branches, the epsilon (ɛ) group and the non-epsilon (non-ɛ) group. Moreover, expression profiles derived from transcriptome data and quantitative reverse-transcription PCR (qRT-PCR) analysis exhibited diverse expression patterns of Md14-3-3 genes in various tissues and in response to different sugars and hormones treatments during floral transition phase. Four Md14-3-3 isoforms ( MdGF14a , MdGF14d , MdGF14i and MdGF14j ) exhibiting prominent transcriptional responses to sugars and hormones were selected for further investigation. Subcellular localization of four selected Md14-3-3 proteins demonstrated their localization in both the cytoplasm and nucleus. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation (BiFC) experiments showed that the four Md14-3-3 proteins interact with key floral integrators, MdTFL1 (TERMINAL FLOWER1) and MdFT (FLOWERING LOCUS T). Conclusion: We comprehensively identified Md14-3-3s family in apple. Some Md14-3-3 genes are predominantly expressed during apple flowering transition stage, and may participate in regulation of flowering through association with flower control genes. Our results provide a preliminary framework for further investigation into the roles of Md14-3-3s for flower transition.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Weibing Zhuang ◽  
Xiaochun Shu ◽  
Xinya Lu ◽  
Tao Wang ◽  
Fengjiao Zhang ◽  
...  

Abstract Background MYB transcription factors, comprising one of the largest transcription factor families in plants, play many roles in secondary metabolism, especially in anthocyanin biosynthesis. However, the functions of the PdeMYB transcription factor in colored-leaf poplar remain elusive. Results In the present study, genome-wide characterization of the PdeMYB genes in colored-leaf poplar (Populus deltoids) was conducted. A total of 302 PdeMYB transcription factors were identified, including 183 R2R3-MYB, five R1R2R3-MYB, one 4R-MYB, and 113 1R-MYB transcription factor genes. Genomic localization and paralogs of PdeMYB genes mapped 289 genes on 19 chromosomes, with collinearity relationships among genes. The conserved domain, gene structure, and evolutionary relationships of the PdeMYB genes were also established and analyzed. The expression levels of PdeMYB genes were obtained from previous data in green leaf poplar (L2025) and colored leaf poplar (QHP) as well as our own qRT-PCR analysis data in green leaf poplar (L2025) and colored leaf poplar (CHP), which provide valuable clues for further functional characterization of PdeMYB genes. Conclusions The above results provide not only comprehensive insights into the structure and functions of PdeMYB genes but also provide candidate genes for the future improvement of leaf colorization in Populus deltoids.


2020 ◽  
Author(s):  
Xiya Zuo ◽  
Shixiang Wang ◽  
Wen Xiang ◽  
Huiru Yang ◽  
Muhammad Mobeen Tahir ◽  
...  

Abstract Background: Apple (Malus domestica Borkh.) is one of the most popular cultivated fruit crops in China. Apple floral transition is an important process but liable to be affected by various environmental factors. The 14-3-3 proteins are involved in regulating diverse biological processes in plants, and some 14-3-3 members play vital roles in flowering. However, little information was available about the 14-3-3 members in apple.Results: In the current study, we identified eighteen 14-3-3 gene family members from the apple genome database, designated MdGF14a to MdGF14r. The isoforms possess a conserved core region comprising nine antiparallel α-helices and divergent N and C termini. According to their structural and phylogenetic features, Md14-3-3 proteins could be classified into two major evolutionary branches, the epsilon (ɛ) group and the non-epsilon (non-ɛ) group. Moreover, expression profiles derived from transcriptome data and quantitative real-time reverse transcription PCR analysis showed diverse expression patterns of Md14-3-3 genes in various tissues and in response to different sugars and hormone treatments during the floral transition phase. Four Md14‑3-3 isoforms (MdGF14a, MdGF14d, MdGF14i, and MdGF14j) exhibiting prominent transcriptional responses to sugars and hormones were selected for further investigation. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation experiments showed that the four Md14-3-3 proteins interact with key floral integrators, MdTFL1 (TERMINAL FLOWER1) and MdFT (FLOWERING LOCUS T). Subcellular localization of four selected Md14-3-3 proteins demonstrated their localization in both the cytoplasm and nucleus.Conclusion: We identified the Md14-3-3s family in apple comprehensively. Certain Md14-3-3 genes are expressed predominantly during the apple floral transition stage, and may participate in the regulation of flowering through association with flower control genes. Our results provide a preliminary framework for further investigation into the roles of Md14-3-3s in floral transition.


2001 ◽  
Vol 69 (6) ◽  
pp. 3618-3627 ◽  
Author(s):  
P. Scott Hefty ◽  
Sarah E. Jolliff ◽  
Melissa J. Caimano ◽  
Stephen K. Wikel ◽  
Justin D. Radolf ◽  
...  

ABSTRACT In previous studies we have characterized the cp32/18 loci inBorrelia burgdorferi 297 which encode OspE and OspF orthologs and a third group of lipoproteins which possess OspE/F-like leader peptides (Elps). To further these studies, we have comprehensively analyzed their patterns of expression throughout the borrelial enzootic cycle. Serial dilution reverse transcription-PCR analysis indicated that although a shift in temperature from 23 to 37°C induced transcription for all nine genes analyzed, this effect was often markedly enhanced in mammalian host-adapted organisms cultivated within dialysis membrane chambers (DMCs) implanted within the peritoneal cavities of rats. Indirect immunofluorescence assays performed on temperature-shifted, in vitro-cultivated spirochetes and organisms in the midguts of unfed and fed ticks revealed distinct expression profiles for many of the OspE-related, OspF-related, and Elp proteins. Other than BbK2.10 and ElpA1, all were expressed by temperature-shifted organisms, while only OspE, ElpB1, OspF, and BbK2.11 were expressed in the midguts of fed ticks. Additionally, although mRNA was detected for all nine lipoprotein-encoding genes, two of these proteins (BbK2.10 and ElpA1) were not expressed by spirochetes cultivated in vitro, within DMCs, or by spirochetes within tick midguts. However, the observation that B. burgdorferi-infected mice generated specific antibodies against BbK2.10 and ElpA1 indicated that these antigens are expressed only in the mammalian host and that a form of posttranscriptional regulation is involved. Analysis of the upstream regions of these genes revealed several differences between their promoter regions, the majority of which were found in the −10 and −35 hexamers and the spacer regions between them. Also, rather than undergoing simultaneous upregulation during tick feeding, these genes and the corresponding lipoproteins appear to be subject to progressive recruitment or enhancement of expression as B. burgdorferi is transmitted from its tick vector to the mammalian host. These findings underscore the potential relevance of these molecules to the pathogenic events of early Lyme disease.


Sign in / Sign up

Export Citation Format

Share Document