scholarly journals Transcriptomic Analysis of Salivary Glands of Ornithodoros brasiliensis Aragão, 1923, the Agent of a Neotropical Tick-Toxicosis Syndrome in Humans

2021 ◽  
Vol 12 ◽  
Author(s):  
Jose Reck ◽  
Anelise Webster ◽  
Bruno Dall’Agnol ◽  
Ronel Pienaar ◽  
Minique H. de Castro ◽  
...  

Tick salivary glands produce and secrete a variety of compounds that modulate host responses and ensure a successful blood meal. Despite great progress made in the identification of ticks salivary compounds in recent years, there is still a paucity of information concerning salivary molecules of Neotropical argasid ticks. Among this group of ticks, considering the number of human cases of parasitism, including severe syndromes and hospitalization, Ornithodoros brasiliensis can be considered one of the major Neotropical argasid species with impact in public health. Here, we describe the transcriptome analysis of O. brasiliensis salivary glands (ObSG). The transcriptome yielded ~14,957 putative contigs. A total of 368 contigs were attributed to secreted proteins (SP), which represent approximately 2.5% of transcripts but ~53% expression coverage transcripts per million. Lipocalins are the major protein family among the most expressed SP, accounting for ~16% of the secretory transcripts and 51% of secretory protein abundance. The most expressed transcript is an ortholog of TSGP4 (tick salivary gland protein 4), a lipocalin first identified in Ornithodoros kalahariensis that functions as a leukotriene C4 scavenger. A total of 55 lipocalin transcripts were identified in ObSG. Other transcripts potentially involved in tick-host interaction included as: basic/acid tail secretory proteins (second most abundant expressed group), serine protease inhibitors (including Kunitz inhibitors), 5' nucleotidases (tick apyrases), phospholipase A2, 7 disulfide bond domain, cystatins, and tick antimicrobial peptides. Another abundant group of proteins in ObSG is metalloproteases. Analysis of these major protein groups suggests that several duplication events after speciation were responsible for the abundance of redundant compounds in tick salivary glands. A full mitochondrial genome could be assembled from the transcriptome data and confirmed the close genetic identity of the tick strain sampled in the current study, to a tick strain previously implicated in tick toxicoses. This study provides novel information on the molecular composition of ObSG, a Brazilian endemic tick associated with several human cases of parasitism. These results could be helpful in the understanding of clinical findings observed in bitten patients, and also, could provide more information on the evolution of Neotropical argasids.

2009 ◽  
Vol 20 (6) ◽  
pp. 1804-1815 ◽  
Author(s):  
Diana Boy ◽  
Hans-Georg Koch

The universally conserved SecYEG/Sec61 translocon constitutes the major protein-conducting channel in the cytoplasmic membrane of bacteria and the endoplasmic reticulum membrane of eukaryotes. It is engaged in both translocating secretory proteins across the membrane as well as in integrating membrane proteins into the lipid phase of the membrane. In the current study we have detected distinct SecYEG translocon complexes in native Escherichia coli membranes. Blue-Native-PAGE revealed the presence of a 200-kDa SecYEG complex in resting membranes. When the SecA-dependent secretory protein pOmpA was trapped inside the SecYEG channel, a smaller SecY-containing complex of ∼140-kDa was observed, which probably corresponds to a monomeric SecYEG–substrate complex. Trapping the SRP-dependent polytopic membrane protein mannitol permease in the SecYEG translocon, resulted in two complexes of 250 and 600 kDa, each containing both SecY and the translocon-associated membrane protein YidC. The appearance of both complexes was correlated with the number of transmembrane domains that were exposed during targeting of mannitol permease to the membrane. These results suggest that the assembly or the stability of the bacterial SecYEG translocon is influenced by the substrate that needs to be transported.


Parasitology ◽  
2004 ◽  
Vol 129 (3) ◽  
pp. 371-378 ◽  
Author(s):  
D. CARMENA ◽  
J. MARTÍNEZ ◽  
A. BENITO ◽  
J. A. GUISANTES

This study describes, for the first time, the characterization of excretory–secretory antigens (ES-Ag) from Echinococcus granulosus protoscoleces, evaluating their usefulness in the immunodiagnosis of human cystic echinococcosis. ES-Ag were obtained from the first 50 h maintenance of protoscoleces in vitro. This preparation contained over 20 major protein components which could be distinguished by 1-dimensional SDS–PAGE with apparent masses between 9 and 300 kDa. The culture of of protoscoleces from liver produced a greater variety of excretory–secretory protein components than those from lung. Determination of enzymatic activities of secreted proteins revealed the presence of phosphatases, lipases and glucosidases, but no proteases. These findings were compared to those obtained from somatic extracts of protoscoleces and hydatid cyst fluid products. Immunochemical characterization was performed by immunoblotting with sera from individuals infected by cystic echinococcosis (n=15), non-hydatidic parasitoses (n=19), various liver diseases (n=24), lung neoplasia (n=16), and healthy donors (n=18). Antigens with apparent masses of 89, 74, 47/50, 32, and 20 kDa showed specificity for immunodiagnosis of human hydatidosis. The 89 and 74 kDa components corresponded to antigens not yet described in E. granulosus, whereas proteins of 41–43 kDa and 91–95 kDa were recognized by the majority of the non-hydatid sera studied.


2001 ◽  
Vol 184 (8) ◽  
pp. 1056-1064 ◽  
Author(s):  
Subrata Das ◽  
Gautam Banerjee ◽  
Kathleen DePonte ◽  
Nancy Marcantonio ◽  
Fred S. Kantor ◽  
...  

2020 ◽  
Author(s):  
Jae Myoung Suh ◽  
Kwang-eun Kim ◽  
Isaac Park ◽  
Jeesoo Kim ◽  
Myeong-Gyun Kang ◽  
...  

Abstract Here we describe iSLET (in situ Secretory protein Labeling via ER-anchored TurboID) which labels secretory pathway proteins as they transit through the ER-lumen to enable dynamic tracking of tissue-specific secreted proteomes in vivo. We expressed iSLET in the mouse liver and demonstrated efficient in situ labeling of the liver-specific secreted proteome which could be tracked and identified within circulating blood plasma. iSLET is a versatile and powerful tool for studying spatiotemporal dynamics of secretory proteins, a valuable class of biomarkers and therapeutic targets.


1989 ◽  
Vol 109 (1) ◽  
pp. 17-34 ◽  
Author(s):  
P Rosa ◽  
U Weiss ◽  
R Pepperkok ◽  
W Ansorge ◽  
C Niehrs ◽  
...  

We have investigated the sorting and packaging of secretory proteins into secretory granules by an immunological approach. An mAb against secretogranin I (chromogranin B), a secretory protein costored with various peptide hormones and neuropeptides in secretory granules of many endocrine cells and neurons, was expressed by microinjection of its mRNA into the secretogranin I-producing cell line PC12. An mAb against the G protein of vesicular stomatitis virus--i.e., against an antigen not present in PC12 cells--was expressed as a control. The intracellular localization and the secretion of the antibodies was studied by double-labeling immunofluorescence using the conventional and the confocal microscope, as well as by pulse-chase experiments. The secretogranin I antibody, like the control antibody, was transported along the secretory pathway to the Golgi complex. However, in contrast to the control antibody, which was secreted via the constitutive pathway, the secretogranin I antibody formed an immunocomplex with secretogranin I, was packaged into secretory granules, and was released by regulated exocytosis. Our results show that a constitutive secretory protein, unaltered by genetic engineering, can be diverted to the regulated pathway of secretion by its protein-protein interaction with a regulated secretory protein. The data also provide the basis for immunologically studying the role of luminally exposed protein domains in the biogenesis and function of regulated secretory vesicles.


PEDIATRICS ◽  
1962 ◽  
Vol 29 (5) ◽  
pp. 788-793
Author(s):  
Giulio J. Barbero ◽  
Maarten S. Sibinga

A survey for submaxillary enlargement was carried out in 106 children with cystic fibrosis and 300 normal children. Submaxillary enlargement was found in 2% of the normal children and 92% of the children with cystic fibrosis. Chronic enlargement of the submaxillary glands is one of the clinical findings frequently present in children with cystic fibrosis, and it may also have diagnostic value. Cystic fibrosis must be considered as an important cause of chronic enlargement of the submaxillary glands in the pediatric age group.


2020 ◽  
Vol 21 (7) ◽  
pp. 2538 ◽  
Author(s):  
Andrey L. Karamyshev ◽  
Elena B. Tikhonova ◽  
Zemfira N. Karamysheva

Secretory proteins are synthesized in a form of precursors with additional sequences at their N-terminal ends called signal peptides. The signal peptides are recognized co-translationally by signal recognition particle (SRP). This interaction leads to targeting to the endoplasmic reticulum (ER) membrane and translocation of the nascent chains into the ER lumen. It was demonstrated recently that in addition to a targeting function, SRP has a novel role in protection of secretory protein mRNAs from degradation. It was also found that the quality of secretory proteins is controlled by the recently discovered Regulation of Aberrant Protein Production (RAPP) pathway. RAPP monitors interactions of polypeptide nascent chains during their synthesis on the ribosomes and specifically degrades their mRNAs if these interactions are abolished due to mutations in the nascent chains or defects in the targeting factor. It was demonstrated that pathological RAPP activation is one of the molecular mechanisms of human diseases associated with defects in the secretory proteins. In this review, we discuss recent progress in understanding of translational control of secretory protein biogenesis on the ribosome and pathological consequences of its dysregulation in human diseases.


2019 ◽  
Vol 109 (10) ◽  
pp. 1689-1697 ◽  
Author(s):  
Wang Chen ◽  
Yan Li ◽  
Ruibin Yan ◽  
Li Xu ◽  
Li Ren ◽  
...  

Clubroot caused by Plasmodiophora brassicaeis one of the most important diseases in cruciferous crops. The recognition of P. brassicae by host plants is thought to occur at the primary infection stage, but the underlying mechanism remains unclear. Secretory proteins as effector candidates play critical roles in the recognition of pathogens and the interactions between pathogens and hosts. In this study, 33 P. brassicae secretory proteins expressed during primary infection were identified through transcriptome, secretory protein prediction, and yeast signal sequence trap analyses. Furthermore, the proteins that could suppress or induce cell death were screened through an Agrobacterium-mediated plant virus transient expression system and a protoplast transient expression system. Two secretory proteins, PBCN_002550 and PBCN_005499, were found to be capable of inducing cell death associated with H2O2 accumulation and electrolyte leakage in Nicotiana benthamiana. Moreover, PBCN_002550 could also induce cell death in Chinese cabbage. In addition, 24 of the remaining 31 tested secretory proteins could suppress mouse Bcl-2-associated X protein-induced cell death, and 28 proteins could suppress PBCN_002550-induced cell death.


Sign in / Sign up

Export Citation Format

Share Document