scholarly journals Cold Exposure Affects Lipid Metabolism, Fatty Acids Composition and Transcription in Pig Skeletal Muscle

2021 ◽  
Vol 12 ◽  
Author(s):  
Ziye Xu ◽  
Wentao Chen ◽  
Liyi Wang ◽  
Yanbing Zhou ◽  
Qiuyun Nong ◽  
...  

Cold exposure promotes glucose oxidation and modulates the lipid metabolism in adipose tissue, but it is still not fully clear whether cold exposure could affect meat quality and fatty acid metabolism in skeletal muscle of pig in vivo. Here, we kept finishing pigs under cold or room temperature overnight and determined the effects of cold exposure on meat quality, fatty acids composition and transcriptional changes in skeletal muscle of pigs. We found that cold exposure significantly reduced the meat colour24 h and pH24 h, without affecting carcass characteristics and other meat quality traits. Considerable changes were found in the proportions of individual fatty acids and the total content of saturated fatty acid, polyunsaturated fatty acids, monounsaturated fatty acid and n3-fatty acids. RNA-seq results showed upregulated fatty acid biosynthesis genes and downregulated mitochondrial beta-oxidation genes. The lipid metabolism in cold-treated longissimus dorsi muscle might be regulated by functions of the lipoprotein particle, the extracellular matrix, and the PPAR signaling pathways. Our study revealed the potential of cold exposure to regulate the lipid metabolism and fatty acid composition in skeletal muscle of farmed animals.

2020 ◽  
Author(s):  
Ada Admin ◽  
Tim Benninghoff ◽  
Lena Espelage ◽  
Samaneh Eickelschulte ◽  
Isabel Zeinert ◽  
...  

The two closely related RabGTPase-activating proteins (RabGAPs) TBC1D1 and TBC1D4 play a crucial role in the regulation of GLUT4 translocation in response to insulin and contraction in skeletal muscle. In mice, deficiency in one or both RabGAPs leads to reduced insulin and contraction-stimulated glucose uptake, and to elevated fatty acid uptake and oxidation in both glycolytic and oxidative muscle fibers without altering mitochondrial copy number and the abundance of OXPHOS proteins. Here we present evidence for a novel mechanism of skeletal muscle lipid utilization involving the two RabGAPs and the fatty acid transporter SLC27A4/FATP4. Both RabGAPs control the uptake of saturated and unsaturated long-chain fatty acids (LCFAs) into skeletal muscle and knockdown of a subset of RabGAP substrates, <i>Rab8, Rab10 </i>or <i>Rab14, </i>decreased LCFA uptake into these cells. In skeletal muscle from <i>Tbc1d1/Tbc1d4</i> knockout animals, SLC27A4/FATP4 abundance was increased and depletion of SLC27A4/FATP4 but not FAT/CD36 completely abrogated the enhanced fatty acid oxidation in RabGAP-deficient skeletal muscle and cultivated C2C12 myotubes. Collectively, our data demonstrate that RabGAP-mediated control of skeletal muscle lipid metabolism converges with glucose metabolism at the level of downstream RabGTPases and involves regulated transport of LCFAs via SLC27A4/FATP4.


Open Biology ◽  
2017 ◽  
Vol 7 (2) ◽  
pp. 160277 ◽  
Author(s):  
Matías Cabruja ◽  
Sonia Mondino ◽  
Yi Ting Tsai ◽  
Julia Lara ◽  
Hugo Gramajo ◽  
...  

Unlike most bacteria, mycobacteria rely on the multi-domain enzyme eukaryote-like fatty acid synthase I (FAS I) to make fatty acids de novo. These metabolites are precursors of the biosynthesis of most of the lipids present both in the complex mycobacteria cell wall and in the storage lipids inside the cell. In order to study the role of the type I FAS system in Mycobacterium lipid metabolism in vivo , we constructed a conditional mutant in the fas-acpS operon of Mycobacterium smegmatis and analysed in detail the impact of reduced de novo fatty acid biosynthesis on the global architecture of the cell envelope. As expected, the mutant exhibited growth defect in the non-permissive condition that correlated well with the lower expression of fas-acpS and the concomitant reduction of FAS I, confirming that FAS I is essential for survival. The reduction observed in FAS I provoked an accumulation of its substrates, acetyl-CoA and malonyl-CoA, and a strong reduction of C 12 to C 18 acyl-CoAs, but not of long-chain acyl-CoAs (C 19 to C 24 ). The most intriguing result was the ability of the mutant to keep synthesizing mycolic acids when fatty acid biosynthesis was impaired. A detailed comparative lipidomic analysis showed that although reduced FAS I levels had a strong impact on fatty acid and phospholipid biosynthesis, mycolic acids were still being synthesized in the mutant, although with a different relative species distribution. However, when triacylglycerol degradation was inhibited, mycolic acid biosynthesis was significantly reduced, suggesting that storage lipids could be an intracellular reservoir of fatty acids for the biosynthesis of complex lipids in mycobacteria. Understanding the interaction between FAS I and the metabolic pathways that rely on FAS I products is a key step to better understand how lipid homeostasis is regulated in this microorganism and how this regulation could play a role during infection in pathogenic mycobacteria.


2021 ◽  
Author(s):  
Yulianri Rizki Yanza ◽  
Malgorzata Szumacher-Strabel ◽  
Dorota Lechniak ◽  
Sylwester Ślusarczyk ◽  
Pawel Kolodziejski ◽  
...  

Abstract Background: This study aimed to investigate the effect of biologically active compounds (BAC) of Coleus amboinicus Lour. (CAL) herb fed to growing lambs on ruminal methane production, ruminal biohydrogenation of unsaturated fatty acids and meat characteristics. An in vitro trial (Experiment 1) comprising of control and three experimental diets (CAL constituting 10%, 15%, and 20% of the total diet) was conducted to determine an effective dose for in vivo experiments. After the in vitro trial, two in vivo experiments were conducted on six growing, rumen-cannulated lambs (Experiment 2) and 16 growing lambs (Experiment 3), which were assigned into the control (CON) and one experimental diet (20% of CAL). Several parameters were examined in vitro (pH, ammonia and VFA concentrations, protozoa, methanogens and select bacteria populations) and in vivo (methane production, digestibility, ruminal microorganism populations, meat quality, fatty acids profiles in rumen fluid and meat, transcript expression of 5 genes in meat). Results: The CAL lowered in vitro methane production by 51%. In the in vivo experiments, lambs fed CAL decreased methane production by 20% compared with the CON animals (Experiment 3), which corresponded to the reduced total methanogens counts in all experiments up to 28%, notably Methanobacteriales. In Experiment 3, CAL increased or tended to increase the numbers of Ruminococcus albus, Megasphaeraelsdenii, Butyrivibrioproteoclasticus, and Butyrivibriofibrisolvens. Dietary CAL suppressed the Holotricha population, but increased or tended to increase Entodiniomorpha population in Experiments 2 and 3. An increase in the polyunsaturated fatty acid (PUFA) proportion in the rumen of lambs was noted in response to the CAL diet, which was mainly attributable to the increase in C18:3 cis-9 cis-12 cis-15 (LNA) proportion. The CAL reduced the mRNA expressions of four investigated genes in meat (fatty acid synthase, stearoyl-CoA desaturase, lipoprotein lipase, and fatty acid desaturase 1). Conclusions:Summarizing, polyphenols of CAL (20% in diet) origin can mitigate ruminal methane production by inhibiting the methanogens communities. Supplementation of CAL also provides favorable conditions in the rumen by modulating ruminal bacteria involved in fermentation and biohydrogenation of fatty acids. CAL elevated the LNA concentration, which led to improved meat quality through increased deposition of n-3 PUFA.


2020 ◽  
Vol 11 (2) ◽  
pp. 214-219
Author(s):  
L. L. Yuskiv ◽  
I. D. Yuskiv

The changes in total lipids, their fatty acid composition and the ratio of individual classes were established in tissues of the intestine, hepatopancreas and skeletal muscles of carp (Cyprinus carpio Linnaeus, 1758), with body weight 14.5–20.5 g, at different rates of invasion by Bothriocephalus acheilognathi (Yamaguti, 1934) helminth, which belongs to the family Bothriocephalidae, of the Pseudophyllidae order, of the Cestoda class. The examined carp was divided into three groups: first group of fish was free from intestinal helminths of B. acheilognathi (control); second group of fish was weakly infected with helminths (intensity of invasion is 1–3 helminths per fish); the third group of fish was highly infected (the invasion intensity is 4 worms and more per fish). Our results showed that fish infected with helminth B. acheilognathi compared to uninfected fish had reduced total lipid level in the gut due to phospholipids, triacylglycerols, and also lipids were characterized by lower content of linoleic, linolenic, arachidonic, penta- and hexanoic fatty acids; decrease in the level of unsaturated and increase in the content of saturated fatty acids, which leads to an increase of the saturation factor. During the infection of carp with B. acheilognathi in the hepatopancreas, the content of total lipids, structural lipids – phospholipids and reserve energy sources – triacylglycerols is probably reduced, and lipids are characterized by a high content of saturated fatty acids (С14:0, С16:0, С18:0) and lower content of unsaturated: arachidonic (С20:4), linolenic (С18:3) and linoleic acid (С18:2), which is associated with a decrease in the source for the synthesis of a number of polyunsaturated fatty acids, especially docosahexaenoic (С22:6). The total content of lipids, triacylglycerols, free fatty acids and phospholipids in skeletal muscle of carp during the Bothriocephalus invasion decreased and the content of free cholesterol, mono- and triacylglycerols increased. Helminth B. acheilognathi has the effect of reducing the total lipids of the skeletal muscle content of С18-, С20-, С22-polyunsaturated fatty acids and increasing the content of saturated (С14:0, С16:0, С18:0) and monounsaturated (С16:1, С18:1) fatty acids. The obtained results prove that the parasite B. acheilognathi in the intestine of the carp significantly affects the nutrition processes of the host depending on the intensity of the damage by helminths, which is accompanied by impaired lipid metabolism.


1999 ◽  
Vol 276 (2) ◽  
pp. E241-E248 ◽  
Author(s):  
Kevin Evans ◽  
Mo L. Clark ◽  
Keith N. Frayn

We have studied the fate of lipoprotein lipase (LPL)-derived fatty acids by measuring arteriovenous differences across subcutaneous adipose tissue and skeletal muscle in vivo. Six subjects were fasted overnight and were then given 40 g of triacylglycerol either orally or as an intravenous infusion over 4 h. Intracellular lipolysis (hormone-sensitive lipase action; HSL) was suppressed after both oral and intravenous fat loads ( P < 0.001). Insulin, a major regulator of HSL activity, showed little change after either oral or intravenous fat load, suggesting that suppression of HSL action occurred independently of insulin. The rate of action of LPL (measured as triacylglycerol extraction) increased with both oral and intravenous fat loads in adipose tissue ( P = 0.002) and skeletal muscle ( P = 0.001). There was increased escape of LPL-derived fatty acids into the circulation from adipose tissue, shown by lack of reesterification of fatty acids. There was no release into the circulation of LPL-derived fatty acids from skeletal muscle. These results suggest that insulin is not essential for HSL suppression or increased triacylglycerol clearance but is important in reesterification of fatty acids in adipose tissue but not uptake by skeletal muscle, thus affecting fatty acid partitioning between adipose tissue and the circulation, postprandial nonesterified fatty acid concentrations, and hepatic very low density lipoprotein secretion.


2016 ◽  
Vol 8 (2) ◽  
pp. 92
Author(s):  
Hamidou SENOU ◽  
Cai X. ZHENG ◽  
Gabriel SAMAKE ◽  
Mamadou B. TRAORE ◽  
Fousseni FOLEGA ◽  
...  

<p class="1Body">The methyl esters of fatty acids composition of the oil from <em>jatropha curcas</em> seeds were analyzed by gas chromatography-mass spectrometer GC-MS. Fourteen components were found to be representative with 99.52% of the total content of seed oils. The main constituents were unsaturated fatty acids (71.93%) and saturated fatty acids (27.59%). For the saturated fatty acids composition such as palmitic and stearic acid, the rate was 15.80% and 10.79%, respectively. Linoleic acid (39.58%) and oleic acid (30.41%) were obtained in highest concentration among the unsaturated fatty acids identified in the seeds oil of <em>Jatropha curcas</em> from Guizhou. This value also justifies the fluidity of the oil at room temperature. A high percentage of polyunsaturated fatty acids (39.58%) and a slightly lower rate of monounsaturated fatty acids (32.35%) were also observed. The seed oils profile of Guizhou <em>Jatropha curcas</em> presents the desirable fatty acid C14 to C18 and interesting features for the biodiesel production.</p>


2020 ◽  
Author(s):  
Ada Admin ◽  
Tim Benninghoff ◽  
Lena Espelage ◽  
Samaneh Eickelschulte ◽  
Isabel Zeinert ◽  
...  

The two closely related RabGTPase-activating proteins (RabGAPs) TBC1D1 and TBC1D4 play a crucial role in the regulation of GLUT4 translocation in response to insulin and contraction in skeletal muscle. In mice, deficiency in one or both RabGAPs leads to reduced insulin and contraction-stimulated glucose uptake, and to elevated fatty acid uptake and oxidation in both glycolytic and oxidative muscle fibers without altering mitochondrial copy number and the abundance of OXPHOS proteins. Here we present evidence for a novel mechanism of skeletal muscle lipid utilization involving the two RabGAPs and the fatty acid transporter SLC27A4/FATP4. Both RabGAPs control the uptake of saturated and unsaturated long-chain fatty acids (LCFAs) into skeletal muscle and knockdown of a subset of RabGAP substrates, <i>Rab8, Rab10 </i>or <i>Rab14, </i>decreased LCFA uptake into these cells. In skeletal muscle from <i>Tbc1d1/Tbc1d4</i> knockout animals, SLC27A4/FATP4 abundance was increased and depletion of SLC27A4/FATP4 but not FAT/CD36 completely abrogated the enhanced fatty acid oxidation in RabGAP-deficient skeletal muscle and cultivated C2C12 myotubes. Collectively, our data demonstrate that RabGAP-mediated control of skeletal muscle lipid metabolism converges with glucose metabolism at the level of downstream RabGTPases and involves regulated transport of LCFAs via SLC27A4/FATP4.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Yulianri Rizki Yanza ◽  
Malgorzata Szumacher-Strabel ◽  
Dorota Lechniak ◽  
Sylwester Ślusarczyk ◽  
Pawel Kolodziejski ◽  
...  

Abstract Background Methane production and fatty acids (FA) biohydrogenation in the rumen are two main constraints in ruminant production causing environmental burden and reducing food product quality. Rumen functions can be modulated by the biologically active compounds (BACs) of plant origins as shown in several studies e.g. reduction in methane emission, modulation of FA composition with positive impact on the ruminant products. Coleus amboinicus Lour. (CAL) contains high concentration of polyphenols that may potentially reduce methane production and modulate ruminal biohydrogenation of unsaturated FA. This study aimed to investigate the effect of BAC of Coleus amboinicus Lour. (CAL) fed to growing lambs on ruminal methane production, biohydrogenation of unsaturated FA and meat characteristics. In this study, the in vitro experiment aiming at determining the most effective CAL dose for in vivo experiments was followed by two in vivo experiments in rumen-cannulated rams and growing lambs. Experiment 1 (RUSITEC) comprised of control and three experimental diets differing in CAL content (10%, 15%, and 20% of the total diet). The two in vivo experiments were conducted on six growing, rumen-cannulated lambs (Exp. 2) and 16 growing lambs (Exp. 3). Animals were assigned into the control (CON) and experimental (20% of CAL) groups. Several parameters were examined in vitro (pH, ammonia and VFA concentrations, protozoa, methanogens and select bacteria populations) and in vivo (methane production, digestibility, ruminal microorganism populations, meat quality, fatty acids profiles in rumen fluid and meat, transcript expression of 5 genes in meat). Results CAL lowered in vitro methane production by 51%. In the in vivo Exp. 3, CAL decreased methane production by 20% compared with the CON group, which corresponded to reduction of total methanogen counts by up to 28% in all experiments, notably Methanobacteriales. In Exp. 3, CAL increased or tended to increase populations of some rumen bacteria (Ruminococcus albus, Megasphaera elsdenii, Butyrivibrio proteoclasticus, and Butyrivibrio fibrisolvens). Dietary CAL suppressed the Holotricha population, but increased or tended to increase Entodiniomorpha population in vivo. An increase in the polyunsaturated fatty acid (PUFA) proportion in the rumen of lambs was noted in response to the CAL diet, which was mainly attributable to the increase in C18:3 cis-9 cis-12 cis-15 (LNA) proportion. CAL reduced the mRNA expression of four out of five genes investigated in meat (fatty acid synthase, stearoyl-CoA desaturase, lipoprotein lipase, and fatty acid desaturase 1). Conclusions Summarizing, polyphenols of CAL origin (20% in diet) mitigated ruminal methane production by inhibiting the methanogen communities. CAL supplementation also improved ruminal environment by modulating ruminal bacteria involved in fermentation and biohydrogenation of FA. Besides, CAL elevated the LNA concentration, which improved meat quality through increased deposition of n-3 PUFA.


2009 ◽  
Vol 2009 ◽  
pp. 76-76
Author(s):  
E J Kim ◽  
N D Scollan ◽  
R I Richardson ◽  
K Gibson ◽  
R Ball ◽  
...  

Nutrition has a major impact on the fatty acid composition of beef, despite high levels of biohydrogenation of dietary polyunsaturated fatty acids (PUFA) in the rumen (Scollan et al., 2006). The latter may be ameliorated by feeding rumen-protected lipid. Grass relative to concentrate feeding results in beef characterised by a higher content of n-3 PUFA and excellent colour shelf life. This study investigated the effects of including a PUFA-rich lucerne-based plant extract (PX) on the fatty acid composition and meat quality in beef.


Sign in / Sign up

Export Citation Format

Share Document