scholarly journals Genome-wide identification of CAMTA gene family members in Medicago truncatula and their expression during root nodule symbiosis and hormone treatments

2015 ◽  
Vol 6 ◽  
Author(s):  
Yanjun Yang ◽  
Tao Sun ◽  
Luqin Xu ◽  
Erxu Pi ◽  
Sheng Wang ◽  
...  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Songli Yuan ◽  
Danxia Ke ◽  
Rong Li ◽  
Xiangyong Li ◽  
Lei Wang ◽  
...  

Abstract Background Plant papain-like cysteine proteases (PLCPs) are a large class of proteolytic enzymes and play important roles in root nodule symbiosis (RNS), while the whole-genome studies of PLCP family genes in legume are quite limited, and the roles of Glycine max PLCPs (GmPLCPs) in nodulation, nodule development and senescence are not fully understood. Results In the present study, we identified 97 GmPLCPs and performed a genome-wide survey to explore the expansion of soybean PLCP family genes and their relationships to RNS. Nineteen paralogous pairs of genomic segments, consisting of 77 GmPLCPs, formed by whole-genome duplication (WGD) events were identified, showing a high degree of complexity in duplication. Phylogenetic analysis among different species showed that the lineage differentiation of GmPLCPs occurred after family expansion, and large tandem repeat segment were specifically in soybean. The expression patterns of GmPLCPs in symbiosis-related tissues and nodules identified RNS-related GmPLCPs and provided insights into their putative symbiotic functions in soybean. The symbiotic function analyses showed that a RNS-related GmPLCP gene (Glyma.04G190700) really participate in nodulation and nodule development. Conclusions Our findings improved our understanding of the functional diversity of legume PLCP family genes, and provided insights into the putative roles of the legume PLCPs in nodulation, nodule development and senescence.


2006 ◽  
Vol 141 (1) ◽  
pp. 167-177 ◽  
Author(s):  
Junqi Liu ◽  
Susan S. Miller ◽  
Michelle Graham ◽  
Bruna Bucciarelli ◽  
Christina M. Catalano ◽  
...  

2021 ◽  
Vol 3 ◽  
Author(s):  
Citlali Fonseca-García ◽  
Jorge Solis-Miranda ◽  
Ronal Pacheco ◽  
Carmen Quinto

Non-specific lipid transfer proteins (LTPs) constitute a large protein family in plants characterized by having a tunnel-like hydrophobic cavity, which allows them to transfer different lipid molecules. LTPs have been studied in various model plants including those of agronomic interest. Recent studies have demonstrated that LTPs play key functions in both biotic and abiotic stress. In plants-pathogen interaction, they act as either positive or negative regulators of defense responses. However, little is known about the roles of LTPs in symbiotic interactions, especially in root nodule symbiosis. Here, we performed a broad genome analysis of LTP family members in legumes and other important model plants, focusing on their possible roles in legume-rhizobium symbiosis. In silico analysis showed that legumes contain large LTP families, with at least 70 LTP members clustered into four clades. Although the structures of LTP genes and proteins are conserved among species, differences were observed between clades from different species. LTPs are widely expressed in different plant tissues. In general, genes of the LTP1 and LTP2 classes are highly expressed in shoot and reproductive tissues in all analyzed species. Furthermore, genes of the different classes are also expressed in roots inoculated with rhizobia and nodules of legumes. RT-qPCR expression profile analysis of seven PvLTP genes in common bean (Phaseolus vulgaris) revealed that these genes are differentially expressed during the early and late stages of nodulation and they are genetically regulated by PvRbohA. These findings provide insight into the putative roles of LTP family members in legume-rhizobium symbiosis and their possible interactions with RBOH-dependent ROS production.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuta Takahashi ◽  
Kaori Shiojiri ◽  
Akira Yamawo

AbstractAboveground communication between plants is well known to change defense traits in leaves, but its effects on belowground plant traits and soil characteristics have not been elucidated. We hypothesized that aboveground plant-to-plant communication reduces root nodule symbiosis via induction of bactericidal chemical defense substances and changes the soil nutrient environment. Soybean plants were exposed to the volatile organic compounds (VOCs) from damaged shoots of Solidago canadensis var. scabra, and leaf defense traits (total phenolics, saponins), root saponins, and root nodule symbiosis traits (number and biomass of root nodules) were measured. Soil C/N ratios and mineral concentrations were also measured to estimate the effects of resource uptake by the plants. We found that total phenolics were not affected. However, plants that received VOCs had higher saponin concentrations in both leaves and roots, and fewer root nodules than untreated plants. Although the concentrations of soil minerals did not differ between treatments, soil C/N ratio was significantly higher in the soil of communicated plants. Thus, the aboveground plant-to-plant communication led to reductions in root nodule symbiosis and soil nutrient concentrations. Our results suggest that there are broader effects of induced chemical defenses in aboveground plant organs upon belowground microbial interactions and soil nutrients, and emphasize that plant response based on plant-to-plant communications are a bridge between above- and below-ground ecosystems.


2013 ◽  
Vol 14 (S1) ◽  
Author(s):  
Luis Carlos Belarmino ◽  
Roberta Lane de Oliveira Silva ◽  
Nina da Mota Soares Cavalcanti ◽  
Nicolas Krezdorn ◽  
Ederson Akio Kido ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document