scholarly journals A Two-Component Regulatory System in Transcriptional Control of Photosystem Stoichiometry: Redox-Dependent and Sodium Ion-Dependent Phosphoryl Transfer from Cyanobacterial Histidine Kinase Hik2 to Response Regulators Rre1 and RppA

2016 ◽  
Vol 7 ◽  
Author(s):  
Iskander M. Ibrahim ◽  
Sujith Puthiyaveetil ◽  
John F. Allen
2017 ◽  
Author(s):  
Iskander M. Ibrahim ◽  
Liang Wang ◽  
Sujith Puthiyaveetil ◽  
Norbert Krauß ◽  
Jon Nield ◽  
...  

ABSTRACTTwo-component signal transduction systems (TCSs) consist of sensor histidine kinases and response regulators. TCSs mediate adaptation to environmental changes in bacteria, plants, fungi, and protists. Histidine kinase 2 (Hik2) is a sensor histidine kinase found in all known cyanobacteria and as chloroplast sensor kinase in eukaryotic algae and plants. Sodium ions have been shown to inhibit the autophosphorylation activity of Hik2 that precedes phosphoryl transfer to response regulators, but the mechanism of inhibition has not been determined. We report on the mechanism of Hik2 activation and inactivation probed by chemical crosslinking and size exclusion chromatography together with direct visualisation of the kinase using negative-stain transmission electron microscopy of single particles. We show that the functional form of Hik2 is a higher order oligomer such as a hexamer or octamer. Increased NaCl concentration converts the active hexamer into an inactive tetramer. Furthermore, the action of NaCl appears to be confined to the Hik2 kinase domain.IMPORTANCEBacteria sense change and respond to it by means of two-component regulatory systems. The sensor component is a protein that becomes covalently modified by a phosphate group on a histidine side chain. The response regulator accepts the phosphate group onto an aspartate, with structural and functional consequences, often for gene transcription. Histidine kinase 2 is a sensor of sodium ion concentration and redox potential, regulating transcription of genes for light-harvesting and reaction center proteins of photosynthesis in cyanobacteria and chloroplasts of algae and plants. Using radiolabeling, chemical crosslinking, chromatography and electron microscopy, we find that sodium ion concentration governs the oligomeric state of Histidine Kinase 2 and its phosphorylation by ATP.


Microbiology ◽  
2004 ◽  
Vol 150 (2) ◽  
pp. 447-453 ◽  
Author(s):  
Degang Ning ◽  
Xudong Xu

Anabaena sp. PCC 7120 was mutagenized by transposon Tn5-1087b, generating a mutant whose heterocysts lack the envelope polysaccharide layer. The transposon was located between nucleotides 342 and 343 of alr0117, a 918 bp gene encoding a histidine kinase for a two-component regulatory system. Complementation of the mutant with a DNA fragment containing alr0117 and targeted inactivation of the gene confirmed that alr0117 is involved in heterocyst development. RT-PCR showed that alr0117 was constitutively expressed in the presence or absence of a combined-nitrogen source. hepA and patB, the two genes turned on during wild-type heterocyst development, were no longer activated in an alr0117-null mutant. The two-component signal transduction system involving alr0117 may control the formation of the envelope polysaccharide layer and certain late events essential to the function of heterocysts.


2002 ◽  
Vol 13 (2) ◽  
pp. 412-424 ◽  
Author(s):  
Sheng Li ◽  
Susan Dean ◽  
Zhijian Li ◽  
Joe Horecka ◽  
Robert J. Deschenes ◽  
...  

The yeast “two-component” osmotic stress phosphorelay consists of the histidine kinase, Sln1p, the phosphorelay intermediate, Ypd1p and two response regulators, Ssk1p and Skn7p, whose activities are regulated by phosphorylation of a conserved aspartyl residue in the receiver domain. Dephospho-Ssk1p leads to activation of the hyper-osmotic response (HOG) pathway, whereas phospho-Skn7p presumably leads to activation of hypo-osmotic response genes. The multifunctional Skn7 protein is important in oxidative as well as osmotic stress; however, the Skn7p receiver domain aspartate that is the phosphoacceptor in the SLN1 pathway is dispensable for oxidative stress. Like many well-characterized bacterial response regulators, Skn7p is a transcription factor. In this report we investigate the role of Skn7p in osmotic response gene activation. Our studies reveal that the Skn7p HSF-like DNA binding domain interacts with acis-acting element identified upstream ofOCH1 that is distinct from the previously defined HSE-like Skn7p binding site. Our data support a model in which Skn7p receiver domain phosphorylation affects transcriptional activation rather than DNA binding to this class of DNA binding site.


2010 ◽  
Vol 192 (17) ◽  
pp. 4388-4394 ◽  
Author(s):  
Kyle J. Wayne ◽  
Lok-To Sham ◽  
Ho-Ching T. Tsui ◽  
Alina D. Gutu ◽  
Skye M. Barendt ◽  
...  

ABSTRACT The WalRK two-component regulatory system coordinates gene expression that maintains cell wall homeostasis and responds to antibiotic stress in low-GC Gram-positive bacteria. Phosphorylated WalR (VicR) of the major human respiratory pathogen Streptococcus pneumoniae (WalR Spn ) positively regulates transcription of several surface virulence genes and, most critically, pcsB, which encodes an essential cell division protein. Despite numerous studies of several species, little is known about the signals sensed by the WalK histidine kinase or the function of the WalJ ancillary protein encoded in the walRKSpn operon. To better understand the functions of the WalRKJ Spn proteins in S. pneumoniae, we performed experiments to determine their cellular localization and amounts. In contrast to WalK from Bacillus subtilis (WalK Bsu ), which is localized at division septa, immunofluorescence microscopy showed that WalK Spn is distributed throughout the cell periphery. WalJ Spn is also localized to the cell surface periphery, whereas WalR Spn was found to be localized in the cytoplasm around the nucleoid. In fractionation experiments, WalR Spn was recovered from the cytoplasmic fraction, while WalK Spn and the majority of WalJ Spn were recovered from the cell membrane fraction. This fractionation is consistent with the localization patterns observed. Lastly, we determined the cellular amounts of WalRKJ Spn by quantitative Western blotting. The WalR Spn response regulator is relatively abundant and present at levels of ≈6,200 monomers per cell, which are ≈14-fold greater than the amount of the WalK Spn histidine kinase, which is present at ≈460 dimers (920 monomers) per cell. We detected ≈1,200 monomers per cell of WalJ Spn ancillary protein, similar to the amount of WalK Spn .


2000 ◽  
Vol 182 (8) ◽  
pp. 2068-2076 ◽  
Author(s):  
Dagmar Beier ◽  
Rainer Frank

ABSTRACT Two-component systems are frequently involved in the adaptation of bacteria to changing environmental conditions at the level of transcriptional regulation. Here we report the characterization of members of the two-component systems of the gastric pathogenHelicobacter pylori deduced from the genome sequence of strain 26695. We demonstrate that the response regulators HP166, HP1043, and HP1021 have essential functions, as disruption of the corresponding genes is lethal for the bacteria, irrespective of the fact that HP1043 and HP1021 have nonconserved substitutions in crucial amino acids of their receiver domains. An analysis of the in vitro phosphorylation properties of the two-component proteins demonstrates that HP244-HP703 and HP165-HP166 are cognate histidine kinase-response regulator pairs. Furthermore, we provide evidence that the variability of the histidine kinase HP165 caused by a poly(C) tract of variable length close to the 3′ end of open reading frame 165/164 does not interfere with the kinase activity of the transmitter domain of HP165.


1997 ◽  
Vol 23 (3) ◽  
pp. 493-503 ◽  
Author(s):  
Daniel van der Lelie ◽  
Tanja Schwuchow ◽  
Uta Schwidetzky ◽  
Stefan Wuertz ◽  
Wilfried Baeyens ◽  
...  

1998 ◽  
Vol 180 (20) ◽  
pp. 5421-5425 ◽  
Author(s):  
Evelyn Zientz ◽  
Johannes Bongaerts ◽  
Gottfried Unden

ABSTRACT In Escherichia coli the genes encoding the anaerobic fumarate respiratory system are transcriptionally regulated by C4-dicarboxylates. The regulation is effected by a two-component regulatory system, DcuSR, consisting of a sensory histidine kinase (DcuS) and a response regulator (DcuR). DcuS and DcuR are encoded by the dcuSR genes (previouslyyjdHG) at 93.7 min on the calculated E. coli map. Inactivation of the dcuR anddcuS genes caused the loss of C4-dicarboxylate-stimulated synthesis of fumarate reductase (frdABCD genes) and of the anaerobic fumarate-succinate antiporter DcuB (dcuB gene). DcuS is predicted to contain a large periplasmic domain as the supposed site for C4-dicarboxylate sensing. Regulation by DcuR and DcuS responded to the presence of the C4-dicarboxylates fumarate, succinate, malate, aspartate, tartrate, and maleate. Since maleate is not taken up by the bacteria under these conditions, the carboxylates presumably act from without. Genes of the aerobic C4-dicarboxylate pathway encoding succinate dehydrogenase (sdhCDAB) and the aerobic succinate carrier (dctA) are only marginally or negatively regulated by the DcuSR system. The CitAB two-component regulatory system, which is highly similar to DcuSR, had no effect on C4-dicarboxylate regulation of any of the genes.


1999 ◽  
Vol 181 (17) ◽  
pp. 5263-5272 ◽  
Author(s):  
Tracy L. Raivio ◽  
Daniel L. Popkin ◽  
Thomas J. Silhavy

ABSTRACT In Escherichia coli, the Cpx two-component regulatory system activates expression of protein folding and degrading factors in response to misfolded proteins in the bacterial envelope (inner membrane, periplasm, and outer membrane). It is comprised of the histidine kinase CpxA and the response regulator CpxR. This response plays a role in protection from stresses, such as elevated pH, as well as in the biogenesis of virulence factors. Here, we show that the Cpx periplasmic stress response is subject to amplification and repression through positive and negative autofeedback mechanisms. Western blot and operon fusion analyses demonstrated that the cpxRA operon is autoactivated. Conditions that lead to elevated levels of phosphorylated CpxR cause a concomitant increase in transcription ofcpxRA. Conversely, overproduction of CpxP, a small, Cpx-regulated protein of previously unknown function, represses the regulon and can block activation of the pathway. This repression is dependent on an intact CpxA sensing domain. The ability to autoactivate and then subsequently repress allows for a temporary amplification of the Cpx response that may be important in rescuing cells from transitory stresses and cueing the appropriately timed elaboration of virulence factors.


1998 ◽  
Vol 180 (1) ◽  
pp. 20-26 ◽  
Author(s):  
Hai-Ping Cheng ◽  
Graham C. Walker

ABSTRACT The Rhizobium meliloti exoS gene is involved in regulating the production of succinoglycan, which plays a crucial role in the establishment of the symbiosis between R. melilotiRm1021 and its host plant, alfalfa. TheexoS96::Tn5 mutation causes the upregulation of the succinoglycan biosynthetic genes, thereby resulting in the overproduction of succinoglycan. Through cloning and sequencing, we found that the exoS gene is a close homolog of theAgrobacterium tumefaciens chvG gene, which has been proposed to encode the sensor protein of the ChvG-ChvI two-component regulatory system, a member of the EnvZ-OmpR family. Further analyses revealed the existence of a newly discovered A. tumefaciens chvI homolog located just upstream of the R. meliloti exoS gene. R. meliloti ChvI may serve as the response regulator of ExoS in a two-component regulatory system. By using ExoS-specific antibodies, it was found that the ExoS protein cofractionated with membrane proteins, suggesting that it is located in the cytoplasmic membrane. By using the same antibodies, it was shown that the exoS96::Tn5 allele encodes an N-terminal truncated derivative of ExoS. The cytoplasmic histidine kinase domain of ExoS was expressed in Escherichia coli and purified, as was the R. meliloti ChvI protein. The ChvI protein autophosphorylated in the presence of acetylphosphate, and the ExoS cytoplasmic domain fragment autophosphorylated at a histidine residue in the presence of ATP. The ChvI protein was phosphorylated in the presence of ATP only when the histidine kinase domain of ExoS was also present. We propose a model for regulation of succinoglycan production by R. meliloti through the ExoS-ChvI two-component regulatory system.


2008 ◽  
Vol 191 (3) ◽  
pp. 693-700 ◽  
Author(s):  
Tzung-Huei Lai ◽  
Yumi Kumagai ◽  
Mamoru Hyodo ◽  
Yoshihiro Hayakawa ◽  
Yasuko Rikihisa

ABSTRACT Anaplasma phagocytophilum, the etiologic agent of human granulocytic anaplasmosis (HGA), has genes predicted to encode three sensor kinases, one of which is annotated PleC, and three response regulators, one of which is PleD. Prior to this study, the roles of PleC and PleD in the obligatory intracellular parasitism of A. phagocytophilum and their biochemical activities were unknown. The present study illustrates the relevance of these factors by demonstrating that both pleC and pleD were expressed in an HGA patient. During A. phagocytophilum development in human promyelocytic HL-60 cells, PleC and PleD were synchronously upregulated at the exponential growth stage and downregulated prior to extracellular release. A recombinant PleC kinase domain (rPleCHKD) has histidine kinase activity; no activity was observed when the conserved site of phosphorylation was replaced with alanine. A recombinant PleD (rPleD) has autokinase activity using phosphorylated rPleCHKD as the phosphoryl donor but not with two other recombinant histidine kinases. rPleCHKD could not serve as the phosphoryl donor for a mutant rPleD (with a conserved aspartic acid, the site of phosphorylation, replaced by alanine) or two other A. phagocytophilum recombinant response regulators. rPleD had diguanylate cyclase activity to generate cyclic (c) di-GMP from GTP in vitro. UV cross-linking of A. phagocytophilum lysate with c-di-[32P]GMP detected an ∼47-kDa endogenous protein, presumably c-di-GMP downstream receptor. A new hydrophobic c-di-GMP derivative, 2′-O-di(tert-butyldimethylsilyl)-c-di-GMP, inhibited A. phagocytophilum infection in HL-60 cells. Our results suggest that the two-component PleC-PleD system is a diguanylate cyclase and that a c-di-GMP-receptor complex regulates A. phagocytophilum intracellular infection.


Sign in / Sign up

Export Citation Format

Share Document