scholarly journals Coordinated Regulation of Anthocyanin Biosynthesis Genes Confers Varied Phenotypic and Spatial-Temporal Anthocyanin Accumulation in Radish (Raphanus sativus L.)

2017 ◽  
Vol 8 ◽  
Author(s):  
Everlyne M'mbone Muleke ◽  
Lianxue Fan ◽  
Yan Wang ◽  
Liang Xu ◽  
Xianwen Zhu ◽  
...  
2020 ◽  
Vol 71 (9) ◽  
pp. 2537-2550 ◽  
Author(s):  
Qingbiao Wang ◽  
Yanping Wang ◽  
Honghe Sun ◽  
Liang Sun ◽  
Li Zhang

Abstract Red-fleshed radish (Raphanus sativus L.) is a unique cultivar whose taproot is rich in anthocyanins beneficial to human health. However, the frequent occurrence of white-fleshed mutants affects the purity of commercially produced radish and the underlying mechanism has puzzled breeders for many years. In this study, we combined quantitative trait location by genome resequencing and transcriptome analyses to identify a candidate gene (RsMYB1) responsible for anthocyanin accumulation in red-fleshed radish. However, no sequence variation was found in the coding and regulatory regions of the RsMYB1 genes of red-fleshed (MTH01) and white-fleshed (JC01) lines, and a 7372 bp CACTA transposon in the RsMYB1 promoter region occurred in both lines. A subsequent analysis suggested that the white-fleshed mutant was the result of altered DNA methylation in the RsMYB1 promoter. This heritable epigenetic change was due to the hypermethylated CACTA transposon, which induced the spreading of DNA methylation to the promoter region of RsMYB1. Thus, RsMYB1 expression was considerably down-regulated, which inhibited anthocyanin biosynthesis in the white-fleshed mutant. An examination of transgenic radish calli and the results of a virus-induced gene silencing experiment confirmed that RsMYB1 is responsible for anthocyanin accumulation. Moreover, the mutant phenotype was partially eliminated by treatment with a demethylating agent. This study explains the molecular mechanism regulating the appearance of white-fleshed mutants of red-fleshed radish.


2021 ◽  
Vol 22 (20) ◽  
pp. 10927
Author(s):  
Da-Hye Kim ◽  
Jundae Lee ◽  
JuHee Rhee ◽  
Jong-Yeol Lee ◽  
Sun-Hyung Lim

The red or purple color of radish (Raphanus sativus L.) taproots is due to anthocyanins, which have nutritional and aesthetic value, as well as antioxidant properties. Moreover, the varied patterns and levels of anthocyanin accumulation in radish roots make them an interesting system for studying the transcriptional regulation of anthocyanin biosynthesis. The R2R3 MYB transcription factor RsMYB1 is a key positive regulator of anthocyanin biosynthesis in radish. Here, we isolated an allele of RsMYB1, named RsMYB1Short, in radish cultivars with white taproots. The RsMYB1Short allele carried a 4 bp insertion in the first exon causing a frame-shift mutation of RsMYB1, generating a truncated protein with only a partial R2 domain at the N-terminus. Unlike RsMYB1Full, RsMYB1Short was localized to the nucleus and the cytoplasm and failed to interact with their cognate partner RsTT8. Transient expression of genomic or cDNA sequences for RsMYB1Short in radish cotyledons failed to induce anthocyanin accumulation, but that for RsMYB1Full activated it. Additionally, RsMYB1Short showed the lost ability to induce pigment accumulation and to enhance the transcript level of anthocyanin biosynthetic genes, while RsMYB1Full promoted both processes when co-expressed with RsTT8 in tobacco leaves. As the result of the transient assay, co-expressing RsTT8 and RsMYB1Full, but not RsMYB1Short, also enhanced the promoter activity of RsCHS and RsDFR. We designed a molecular marker for RsMYB1 genotyping, and revealed that the RsMYB1Short allele is common in white radish cultivars, underscoring the importance of variation at the RsMYB1 locus in anthocyanin biosynthesis in the radish taproot. Together, these results indicate that the nonsense mutation of RsMYB1 generated the truncated protein, RsMYB1Short, that had the loss of ability to regulate anthocyanin biosynthesis. Our findings highlight that the frame shift mutation of RsMYB1 plays a key role in anthocyanin biosynthesis in the radish taproot.


2019 ◽  
Author(s):  
Jian Gao ◽  
Mao Luo ◽  
Yi Liu ◽  
Fabo Chen ◽  
Hua Peng ◽  
...  

Abstract Radish ( Raphanus sativus L.), belonging to biennial root vegetable crop of Brassicaceae family, is an economically important vegetable crop with an edible taproot. Recently, most of differential expressed genes associating with anthocyanin biosynthesis have been identified in most of important fruit crops. However, transcriptome analysis of anthocyanin biosynthesis and expression of anthocyanin biosynthesis related genes in ‘Hongxin’ radish have not been fully investigated. Here, based on results from HPLC analysis, young fleshy roots obtained from the dynamics development stage of fleshy roots in carmine radish ‘Hongxin 1’ was used for RNA-Seq, including fleshy roots from seedling stage (SS), initial expansion (IE), full-expansion (FE), bolting stage (BS), initial flowering stage (IFS); full-bloom stage (FBS) and podding stage (PS). Subsequently, the putative candidate genes involved in the dynamics development stage of fleshy roots in carmine radish were identified. After that, DGE (differential gene expression) profile analysis was used to identify the pupative transcripts, compared with fleshy roots from seedling stage (SS). In addition, co-modulated DEGs (Common DEGs in the dynamic growing stages of fleshyroot in carmine radish) were also identified, from which most DGEs were more likely to participate in anthocyanin biosynthesis, including two transcription factors RsMYB and Rs RZFP . In addition, some related proteins e.g. RsCHS , RsDFR , RsANS , RsF’3H , RsF3GGT1 , Rs3AT1 , glutathione S-transferase F12, RsUFGT78D2-like and RsUDGT-75C1-like were significantly contributed to the regulatory mechanism during anthocyanin synthesis in the development stage of fleshy roots. Furthermore, GO terms comprised of “anthocyanin-containing compound biosynthetic process” and “anthocyanin-containing compound metabolic process” were commonly overrepresented in the other dynamics growing stages of fleshy roots after initial expansion of fleshy roots. Moreover, these results indicated that five significantly enrichment pathways of DEG were identified for the dynamics growing stages of fleshy roots in carmine radish, including Flavonoid biosynthesis, Flavone and flavonol biosynthesis, Diterpenoid biosynthesis, Anthocyanin biosynthesis, as well as Benzoxazinoid biosynthesis. These results will expand our understanding of complex molecular mechanism of the putative candidate genes involved in the dynamics development stage of fleshyroot in carmine radish.


Sign in / Sign up

Export Citation Format

Share Document