scholarly journals Transcriptomic dynamics changes in development of carmine radish (Raphanus sativus L.) fleshy roots using RNA-seq method

2019 ◽  
Author(s):  
Jian Gao ◽  
Mao Luo ◽  
Yi Liu ◽  
Fabo Chen ◽  
Hua Peng ◽  
...  

Abstract Radish ( Raphanus sativus L.), belonging to biennial root vegetable crop of Brassicaceae family, is an economically important vegetable crop with an edible taproot. Recently, most of differential expressed genes associating with anthocyanin biosynthesis have been identified in most of important fruit crops. However, transcriptome analysis of anthocyanin biosynthesis and expression of anthocyanin biosynthesis related genes in ‘Hongxin’ radish have not been fully investigated. Here, based on results from HPLC analysis, young fleshy roots obtained from the dynamics development stage of fleshy roots in carmine radish ‘Hongxin 1’ was used for RNA-Seq, including fleshy roots from seedling stage (SS), initial expansion (IE), full-expansion (FE), bolting stage (BS), initial flowering stage (IFS); full-bloom stage (FBS) and podding stage (PS). Subsequently, the putative candidate genes involved in the dynamics development stage of fleshy roots in carmine radish were identified. After that, DGE (differential gene expression) profile analysis was used to identify the pupative transcripts, compared with fleshy roots from seedling stage (SS). In addition, co-modulated DEGs (Common DEGs in the dynamic growing stages of fleshyroot in carmine radish) were also identified, from which most DGEs were more likely to participate in anthocyanin biosynthesis, including two transcription factors RsMYB and Rs RZFP . In addition, some related proteins e.g. RsCHS , RsDFR , RsANS , RsF’3H , RsF3GGT1 , Rs3AT1 , glutathione S-transferase F12, RsUFGT78D2-like and RsUDGT-75C1-like were significantly contributed to the regulatory mechanism during anthocyanin synthesis in the development stage of fleshy roots. Furthermore, GO terms comprised of “anthocyanin-containing compound biosynthetic process” and “anthocyanin-containing compound metabolic process” were commonly overrepresented in the other dynamics growing stages of fleshy roots after initial expansion of fleshy roots. Moreover, these results indicated that five significantly enrichment pathways of DEG were identified for the dynamics growing stages of fleshy roots in carmine radish, including Flavonoid biosynthesis, Flavone and flavonol biosynthesis, Diterpenoid biosynthesis, Anthocyanin biosynthesis, as well as Benzoxazinoid biosynthesis. These results will expand our understanding of complex molecular mechanism of the putative candidate genes involved in the dynamics development stage of fleshyroot in carmine radish.

2019 ◽  
Author(s):  
Jian Gao ◽  
Mao Luo ◽  
Yi Liu ◽  
Fabo Chen ◽  
Hua Peng ◽  
...  

Abstract Radish ( Raphanus sativus L.), belonging to biennial root vegetable crop of Brassicaceae family, is an economically important vegetable crop with an edible taproot. Recently, most of differential expressed genes associating with anthocyanin biosynthesis have been identified in most of important fruit crops. However, transcriptome analysis of anthocyanin biosynthesis and expression of anthocyanin biosynthesis related genes in ‘Hongxin’ radish have not been fully investigated. Here, based on results from HPLC analysis, young fleshy roots obtained from the dynamics development stage of fleshy roots in carmine radish ‘Hongxin 1’ was used for RNA-Seq, including fleshy roots from seedling stage (SS), initial expansion (IE), full-expansion (FE), bolting stage (BS), initial flowering stage (IFS); full-bloom stage (FBS) and podding stage (PS). Subsequently, the putative candidate genes involved in the dynamics development stage of fleshy roots in carmine radish were identified. After that, DGE (differential gene expression) profile analysis was used to identify the pupative transcripts, compared with fleshy roots from seedling stage (SS). In addition, co-modulated DEGs (Common DEGs in the dynamic growing stages of fleshyroot in carmine radish) were also identified, from which most DGEs were more likely to participate in anthocyanin biosynthesis, including two transcription factors RsMYB and Rs RZFP . In addition, some related proteins e.g. RsCHS , RsDFR , RsANS , RsF’3H , RsF3GGT1 , Rs3AT1 , glutathione S-transferase F12, RsUFGT78D2-like and RsUDGT-75C1-like were significantly contributed to the regulatory mechanism during anthocyanin synthesis in the development stage of fleshy roots. Furthermore, GO terms comprised of “anthocyanin-containing compound biosynthetic process” and “anthocyanin-containing compound metabolic process” were commonly overrepresented in the other dynamics growing stages of fleshy roots after initial expansion of fleshy roots. Moreover, these results indicated that five significantly enrichment pathways of DEG were identified for the dynamics growing stages of fleshy roots in carmine radish, including Flavonoid biosynthesis, Flavone and flavonol biosynthesis, Diterpenoid biosynthesis, Anthocyanin biosynthesis, as well as Benzoxazinoid biosynthesis. These results will expand our understanding of complex molecular mechanism of the putative candidate genes involved in the dynamics development stage of fleshyroot in carmine radish.


2019 ◽  
Author(s):  
Jian Gao ◽  
Mao Luo ◽  
Yi Liu ◽  
Fabo Chen ◽  
Hua Peng ◽  
...  

Abstract Radish ( Raphanus sativus L.), belonging to biennial root vegetable crop of Brassicaceae family, is an economically important vegetable crop with an edible taproot. Recently, most of differential expressed genes associating with anthocyanin biosynthesis have been identified in most of important fruit crops. However, transcriptome analysis of anthocyanin biosynthesis and expression of anthocyanin biosynthesis related genes in ‘Hongxin’ radish have not been fully investigated. Here, based on results from HPLC analysis, young fleshy roots obtained from the dynamics development stage of fleshy roots in carmine radish ‘Hongxin 1’ was used for RNA-Seq, including fleshy roots from seedling stage (SS), initial expansion (IE), full-expansion (FE), bolting stage (BS), initial flowering stage (IFS); full-bloom stage (FBS) and podding stage (PS). Subsequently, the putative candidate genes involved in the dynamics development stage of fleshy roots in carmine radish were identified. After that, DGE (differential gene expression) profile analysis was used to identify the pupative transcripts, compared with fleshy roots from seedling stage (SS). In addition, co-modulated DEGs (Common DEGs in the dynamic growing stages of fleshyroot in carmine radish) were also identified, from which most DGEs were more likely to participate in anthocyanin biosynthesis, including two transcription factors RsMYB and Rs RZFP . In addition, some related proteins e.g. RsCHS , RsDFR , RsANS , RsF’3H , RsF3GGT1 , Rs3AT1 , glutathione S-transferase F12, RsUFGT78D2-like and RsUDGT-75C1-like were significantly contributed to the regulatory mechanism during anthocyanin synthesis in the development stage of fleshy roots. Furthermore, GO terms comprised of “anthocyanin-containing compound biosynthetic process” and “anthocyanin-containing compound metabolic process” were commonly overrepresented in the other dynamics growing stages of fleshy roots after initial expansion of fleshy roots. Moreover, these results indicated that five significantly enrichment pathways of DEG were identified for the dynamics growing stages of fleshy roots in carmine radish, including Flavonoid biosynthesis, Flavone and flavonol biosynthesis, Diterpenoid biosynthesis, Anthocyanin biosynthesis, as well as Benzoxazinoid biosynthesis. These results will expand our understanding of complex molecular mechanism of the putative candidate genes involved in the dynamics development stage of fleshyroot in carmine radish.


Plants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 344 ◽  
Author(s):  
Geng Meng ◽  
Sabine K. Clausen ◽  
Søren K. Rasmussen

Black carrots are characterized by a significant amount of anthocyanins, which are not only a good source of natural food colorant, but can also provide many health benefits to humans. In the present work, taproots of different carrot genotypes were used to identify the candidate genes related to anthocyanin synthesis, with particular a focus on R2R3MYB, bHLH transcription factors, and glutathione S-transferase gene (GST). The RNA-sequencing analysis (RNA-Seq) showed that DcMYB6 and DcMYB7 had a genotypic dependent expression and they are likely involved in the regulation of anthocyanin biosynthesis. They were specifically upregulated in solid black taproots, including both black phloem and xylem. DcbHLH3 (LOC108204485) was upregulated in all black samples compared with the orange ones. We also found that GST1 (LOC108205254) might be an important anthocyanin transporter, and its upregulated expression resulted in the increasing of vacuolar anthocyanin accumulation in black samples. Moreover, high performance liquid chromatographic (HPLC) analysis and liquid chromatography coupled to mass spectrometry (LC-MS) were used to identify the individual anthocyanin in the purple tissues of two carrot cultivars. The results showed that five main anthocyanin compounds and the most abundant anthocyanin were the same in different tissues, while the second-highest anthocyanin between three tissues was different, even in the same cultivar. In conclusion, this study combined anthocyanin profiles and comparative transcriptomic analysis to identify candidate genes involved in anthocyanin biosynthesis in carrots, thus providing a better foundation for improving anthocyanin accumulation in carrots as a source of colorants.


Plants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 594
Author(s):  
Haemyeong Jung ◽  
Seung Hee Jo ◽  
Won Yong Jung ◽  
Hyun Ji Park ◽  
Areum Lee ◽  
...  

Gibberellic acid (GA) is one of the factors that promotes flowering in radish (Raphanus Sativus L.), although the mechanism mediating GA activation of flowering has not been determined. To identify this mechanism in radish, we compared the effects of GA treatment on late-flowering (NH-JS1) and early-flowering (NH-JS2) radish lines. GA treatment promoted flowering in both lines, but not without vernalization. NH-JS2 plants displayed greater bolting and flowering pathway responses to GA treatment than NH-JS1. This variation was not due to differences in GA sensitivity in the two lines. We performed RNA-seq analysis to investigate GA-mediated changes in gene expression profiles in the two radish lines. We identified 313 upregulated, differentially expressed genes (DEGs) and 207 downregulated DEGs in NH-JS2 relative to NH-JS1 in response to GA. Of these, 21 and 8 genes were identified as flowering time and GA-responsive genes, respectively. The results of RNA-seq and quantitative PCR (qPCR) analyses indicated that RsFT and RsSOC1-1 expression levels increased after GA treatment in NH-JS2 plants but not in NH-JS1. These results identified the molecular mechanism underlying differences in the flowering-time genes of NH-JS1 and NH-JS2 after GA treatment under insufficient vernalization conditions.


Sign in / Sign up

Export Citation Format

Share Document