scholarly journals Water-Deficit Tolerance in Sweet Potato [Ipomoea batatas (L.) Lam.] by Foliar Application of Paclobutrazol: Role of Soluble Sugar and Free Proline

2017 ◽  
Vol 8 ◽  
Author(s):  
Suravoot Yooyongwech ◽  
Thapanee Samphumphuang ◽  
Rujira Tisarum ◽  
Cattarin Theerawitaya ◽  
Suriyan Cha-um
PROTOPLASMA ◽  
2019 ◽  
Vol 257 (1) ◽  
pp. 197-211 ◽  
Author(s):  
Rujira Tisarum ◽  
Cattarin Theerawitaya ◽  
Thapanee Samphumphuang ◽  
Harminder Pal Singh ◽  
Suriyan Cha-um

2017 ◽  
Vol 9 (1) ◽  
pp. 291-297
Author(s):  
Pravin Singh ◽  
Kavita Aravindakshan ◽  
I. B. Maurya ◽  
Jitendra Singh ◽  
Bhim Singh ◽  
...  

A field experiment was conducted to study the effect of different levels of potassium and zinc on growth, yield and economics of sweet potato. The experiment was laid out on clay and loam soil by adopting randomized block design with factorial technique (FRBD). The sixteen treatments consisted of combination of four levels of po-tassium (0, 80, 100 and 120 kg/ha through muriate of potash and four levels of foliar zinc (control i.e. water spray, 10, 20 and 30ppm) through zinc sulphate. The individual application of potassium 120 kg K2O/ha significantly in-creased the number of tubers per plant (4.60), average weight of tuber (275.31 g), length of tuber (16.77 cm), diam-eter of tuber (5.69 cm), tuber yield per plot (9.71 kg), tuber yield per hectare (49.04 t) respectively as compared to control. With the foliar application of zinc (30 ppm) significant increase in number of tubers per plant (4.18), average weight of tuber (234.73 g), length of tuber (18.12 cm), diameter of tuber (5.16 cm), tuber yield per plot (8.33 kg) and tuber yield per hectare (42.05 t) was recordedas compared to control. The treatment combination (120 kg K2O+30ppm Zn) recorded the maximum yield parameters i.e. chlorophyll content (37.00 mg/100 g), average weight of tuber (302.17 g), length of tuber (19.82 cm), diameter of tuber (5.97 cm), maximum tuber yield per plot (11.02 kg), tuber yield per hectare (55.67 t) and benefit-cost ratio (B: C ratio) of 4.22:1.While, the treatment (120 kg K2O+30ppm Zn) had the maximum number of tuber (4.86), minimum number of tuber was recorded in control. From the experi-ment, it appeared that application of potassium and zinc can be used to improve yield and higher net monetary re-turns of sweet potato.


Agronomy ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 138 ◽  
Author(s):  
Rujira Tisarum ◽  
Cattarin Theerawitaya ◽  
Thapanee Samphumphung ◽  
Teruhiro Takabe ◽  
Suriyan Cha-um

The aim of this investigation was to enhance overall growth, yield attributes as well as physio-biochemical adaptive strategies by exogenous foliar application of glycine betaine (GlyBet) in two rice varieties against water deficit stress under greenhouse conditions. Rice crop cvs. RD43 (low amylose content) and SPR1 (high amylose content) grown in clay pots containing garden soil until booting stage were chosen as the test plant material, sprayed by 0 (control) or 100 mM GlyBet and subsequently subjected to: MWD (mild water deficit by 8 d water withholding; 24.80% SWC; Soil water content) or SWD (severe water deficit by 14 d water withholding; 13.63% SWC) or WW (well-watered conditions or control). Free proline content in cv. RD43 was rapidly increased in relation to the degree of water deficit and suppressed by exogenous GlyBet, while free proline in cv. SPR1 was lower than cv. RD43. Overall growth performances and yield traits in both cultivars under MWD were maintained by exogenous application of GlyBet; however, these parameters declined under SWD even after the GlyBet application. Degradation of photosynthetic pigments and chlorophyll fluorescence in pretreated GlyBet plants under SWD were prevented, resulting in elevated net photosynthetic rate (Pn). Interestingly, Pn was very sensitive parameter that sharply declined under SWD in both RD43 and SPR1 genotypes. Positive relationships between physio-morphological and biochemical changes in rice genotypes were demonstrated with high correlation co-efficiency. Based on the key results, it is concluded that foliar GlyBet application may play an important role in drought-tolerant enhancement in rice crops.


2017 ◽  
Vol 1 (02) ◽  
pp. 85-99
Author(s):  
SYLVIA OBINDA NAWIRI ◽  
RICHARD OKOTH ODUOR ◽  
ALLAN MGUTU JALEMBA

Nawiri SO, Oduor RO, Jalemba AM. 2017. Genetic engineering of sweet potatoes (Ipomoea batatas) using isopentenyl transferase gene for enhanced drought tolerance. Asian J Agric 1: 85-99. Approximately 70% of yield crop reduction worldwide is caused by drought. Due to severe drought which happened many times as a result of climate change, substantial yield deprivation is usual among the major cereals such as maize, wheat, and barley.. Therefore, drought tolerant crops that still yield amidst erratic climatic phenomenon are greatly needed. Due to its capability to produce high yield in a short period, sweet potato is suitable for cultivation in regions with limited or erratic rain water supply where other food crops cannot grow easily. Nevertheless, its sensitivity to water deficit may lead to the adverse crop growth and yield. By conventional hybridization method, sweet potato is tried to be improved, but it gives unsatisfied results due to its high male sterility, sexual incompatibility and hexaploid nature of its genome.The aim of this study, therefore, is to develop new varieties of sweet potato with improved tolerance to water-deficit stress for sustainable production of sweet potato under water-limited conditions. Three sweet potato genotypes: Jewel, Kemb36, and Ksp36 were transformed using isopentenyl transferase gene (IPT) that delays drought-induced senescence via up-regulation of cytokinin biosynthesis, under the control of a waterdeficit responsive and maturation specific promoter (PSARK). The PNOV-IPT gene construct was introduced into sweet potato to evaluate their transformability and regenerability. It is done via Agrobacterium tumefaciens strain EHA101 and the plants subsequently regenerated via somatic embryogenesis. Jewel genotype recorded the highest transformation and regeneration frequency followed by Kemb36 and KSP36. Calli were cultured on media supplemented with various mannose concentrations to evaluate the suitability of mannose as a selectable marker for sweet potato, and it was figured out that 30 g/L concentration was optimal for selection of transformed events. At the time of PCR analysis, Jewel had the highest transformation efficiency followed by Kemb36. At the time for evaluation on drought tolerance under controlled conditions, the sweet potato showed delayed senescence and greater drought tolerance under water deficit conditions in the glasshouse. These plants exhibited better growth, higher yield, higher water status maintenance, higher chlorophyll content, and thus higher photosynthetic rates under reduced water conditions in comparison to wild-type. These results, therefore, indicated that expression of isopentenyl transferase gene in sweet potato significantly improves drought tolerance. Therefore, IPT gene should be used to transform other economically important food crops to delay drought-induced senescence and enhance drought tolerance.


Sign in / Sign up

Export Citation Format

Share Document