scholarly journals Overexpression of NtWRKY50 Increases Resistance to Ralstonia solanacearum and Alters Salicylic Acid and Jasmonic Acid Production in Tobacco

2017 ◽  
Vol 8 ◽  
Author(s):  
Qiuping Liu ◽  
Ying Liu ◽  
Yuanman Tang ◽  
Juanni Chen ◽  
Wei Ding
Author(s):  
Huaming He ◽  
Jordi Denecker ◽  
Katrien Van Der Kelen ◽  
Patrick Willems ◽  
Robin Pottie ◽  
...  

Abstract Signaling events triggered by hydrogen peroxide (H2O2) regulate plant growth and defense by orchestrating a genome-wide transcriptional reprogramming. However, the specific mechanisms that govern H2O2-dependent gene expression are still poorly understood. Here, we identify the Arabidopsis Mediator complex subunit MED8 as a regulator of H2O2 responses. The introduction of the med8 mutation in a constitutive oxidative stress genetic background (catalase-deficient, cat2) was associated with enhanced activation of the salicylic acid pathway and accelerated cell death. Interestingly, med8 seedlings were more tolerant to oxidative stress generated by the herbicide methyl viologen (MV) and exhibited transcriptional hyperactivation of defense signaling, in particular salicylic acid- and jasmonic acid-related pathways. The med8-triggered tolerance to MV was manipulated by the introduction of secondary mutations in salicylic acid and jasmonic acid pathways. In addition, analysis of the Mediator interactome revealed interactions with components involved in mRNA processing and microRNA biogenesis, hence expanding the role of Mediator beyond transcription. Notably, MED8 interacted with the transcriptional regulator NEGATIVE ON TATA-LESS, NOT2, to control the expression of H2O2-inducible genes and stress responses. Our work establishes MED8 as a component regulating oxidative stress responses and demonstrates that it acts as a negative regulator of H2O2-driven activation of defense gene expression.


2021 ◽  
Vol 22 (11) ◽  
pp. 5507
Author(s):  
Ying Liu ◽  
Yuanman Tang ◽  
Xi Tan ◽  
Wei Ding

E3 ubiquitin ligases, the most important part of the ubiquitination process, participate in various processes of plant immune response. RBR E3 ligase is one of the E3 family members, but its functions in plant immunity are still little known. NtRNF217 is a RBR E3 ligase in tobacco based on the sequence analysis. To assess roles of NtRNF217 in tobacco responding to Ralstonia solanacearum, overexpression experiments in Nicotiana tabacum (Yunyan 87, a susceptible cultivar) were performed. The results illuminated that NtRNF217-overexpressed tobacco significantly reduced multiplication of R. solanacearum and inhibited the development of disease symptoms compared with wild-type plants. The accumulation of H2O2 and O2− in NtRNF217-OE plants was significantly higher than that in WT-Yunyan87 plants after pathogen inoculation. The activities of CAT and SOD also increased rapidly in a short time after R. solanacearum inoculation in NtRNF217-OE plants. What is more, overexpression of NtRNF217 enhanced the transcript levels of defense-related marker genes, such as NtEFE26, NtACC Oxidase, NtHIN1, NtHSR201, and NtSOD1 in NtRNF217-OE plants after R. solanacearum inoculation. The results suggested that NtRNF217 played an important role in regulating the expression of defense-related genes and the antioxidant enzymes, which resulted in resistance to R. solanacearum infection.


2011 ◽  
Vol 6 (2-3) ◽  
pp. 99-101 ◽  
Author(s):  
Andrea Occhipinti ◽  
Simon Atsbaha Zebelo ◽  
Andrea Capuzzo ◽  
Massimo Maffei ◽  
Giorgio Gnavi
Keyword(s):  

2003 ◽  
Vol 16 (11) ◽  
pp. 1022-1029 ◽  
Author(s):  
Pradeep Kachroo ◽  
Aardra Kachroo ◽  
Ludmila Lapchyk ◽  
David Hildebrand ◽  
Daniel F. Klessig

The Arabidopsis mutants ssi2 and fab2 are defective in stearoyl ACP desaturase, which causes altered salicylic acid (SA)- and jasmonic acid (JA)-mediated defense signaling. Both ssi2 and fab2 plants show spontaneous cell death, express PR genes constitutively, accumulate high levels of SA, and exhibit enhanced resistance to bacterial and oomycete pathogens. In contrast to constitutive activation of the SA pathway, ssi2 and fab2 plants are repressed in JA-mediated induction of the PDF1.2 gene, which suggests that the SSI2-mediated signaling pathway modulates cross talk between the SA and JA pathways. In this study, we have characterized two recessive nonallelic mutants in the ssi2 background, designated as rdc (restorer of defective cross talk) 2 and rdc8. Both ssi2 rdc mutants are suppressed in constitutive SA signaling, show basal level expression of PR-1 gene, and induce high levels of PDF1.2 in response to exogenous application of JA. Interestingly, while the rdc8 mutation completely abolishes spontaneous cell death in ssi2 rdc8 plants, the ssi2 rdc2 plants continue to show some albeit reduced cell death. Fatty acid (FA) analysis showed a reduction in 16:3 levels in ssi2 rdc8 plants, which suggests that this mutation may limit the flux of FAs into the pro-karyotic pathway of glycerolipid biosynthesis. Both rdc2 and rdc8 continue to accumulate high levels of 18:0, which suggests that 18:0 levels were responsible for neither constitutive SA signaling nor repression of JA-induced expression of the PDF1.2 gene in ssi2 plants. We also analyzed SA and JA responses of the fab2-derived shs1 mutant, which accumulates levels of 18:0 over 50% lower than those in the fab2 plants. Even though fab2 shs1 plants were morphologically bigger than fab2 plants, they expressed PR genes constitutively, showed HR-like cell death, and accumulated elevated levels of SA. However, unlike the ssi2 rdc plants, fab2 shs1 plants were unable to induce high levels of PDF1.2 expression in response to exogenous application of JA. Together, these results show that defective cross talk in ssi2 can be restored by second site mutations and is independent of morphological size of the plants, cell death, and elevated levels of 18:0.


2019 ◽  
Vol 14 (4) ◽  
pp. e1581560 ◽  
Author(s):  
Rocío Escobar Bravo ◽  
Gang Chen ◽  
Katharina Grosser ◽  
Nicole M. Van Dam ◽  
Kirsten A. Leiss ◽  
...  

Rhizosphere ◽  
2019 ◽  
Vol 9 ◽  
pp. 69-71 ◽  
Author(s):  
Salar Farhangi-Abriz ◽  
Tahereh Alaee ◽  
Alireza Tavasolee

Sign in / Sign up

Export Citation Format

Share Document