scholarly journals NtRNF217, Encoding a Putative RBR E3 Ligase Protein of Nicotiana tabacum, Plays an Important Role in the Regulation of Resistance to Ralstonia solanacearum Infection

2021 ◽  
Vol 22 (11) ◽  
pp. 5507
Author(s):  
Ying Liu ◽  
Yuanman Tang ◽  
Xi Tan ◽  
Wei Ding

E3 ubiquitin ligases, the most important part of the ubiquitination process, participate in various processes of plant immune response. RBR E3 ligase is one of the E3 family members, but its functions in plant immunity are still little known. NtRNF217 is a RBR E3 ligase in tobacco based on the sequence analysis. To assess roles of NtRNF217 in tobacco responding to Ralstonia solanacearum, overexpression experiments in Nicotiana tabacum (Yunyan 87, a susceptible cultivar) were performed. The results illuminated that NtRNF217-overexpressed tobacco significantly reduced multiplication of R. solanacearum and inhibited the development of disease symptoms compared with wild-type plants. The accumulation of H2O2 and O2− in NtRNF217-OE plants was significantly higher than that in WT-Yunyan87 plants after pathogen inoculation. The activities of CAT and SOD also increased rapidly in a short time after R. solanacearum inoculation in NtRNF217-OE plants. What is more, overexpression of NtRNF217 enhanced the transcript levels of defense-related marker genes, such as NtEFE26, NtACC Oxidase, NtHIN1, NtHSR201, and NtSOD1 in NtRNF217-OE plants after R. solanacearum inoculation. The results suggested that NtRNF217 played an important role in regulating the expression of defense-related genes and the antioxidant enzymes, which resulted in resistance to R. solanacearum infection.

1998 ◽  
Vol 11 (9) ◽  
pp. 869-877 ◽  
Author(s):  
Christophe Etchebar ◽  
Danièle Trigalet-Demery ◽  
Frédérique van Gijsegem ◽  
Jacques Vasse ◽  
André Trigalet

Microscopic studies of the colonization of the vascular tissues of tomato by an HrcV¯ (formerly HrpO¯) mutant strain of Ralstonia solanacearum were carried out after either root inoculation of the mutant strain alone or delayed challenge inoculation by a pathogenic strain. The use of two different marker genes, lacZ and uidA, introduced into either mutant or wild-type strains, respectively, permitted histological observation for the presence of both strains simultaneously. In roots, both strains could be found together in infected root tips and in lateral root emergence sites (lateral root cracks), but these bacterial strains subsequently invaded separate xylem vessels in the root system. At the hypocotyl level, a novel staining procedure, in conjunction with bacterial isolation and counting, showed three vascular colonization patterns: exclusive colonization by each of the competitors or simultaneous presence of each strain in separate xylem vessels. The relative frequencies of these patterns depended upon the root inoculation techniques used. The presence of one population always influenced the density of the other challenge-inoculated population. In plants inoculated with both wild-type and mutant strains, the population of the wild-type strain is lower than in plants inoculated with the wild type alone. In contrast, growth of the HrcV¯ mutant strain was significantly increased in the presence of the pathogenic strain. Two agriculturally acceptable techniques for plant inoculation were tested. Inoculation of plants by transplanting them into soil amended with clay micro-granules impregnated with the HrcV¯ mutant strain gave higher and more reproducible colonization of the plants than inoculation by watering a bacterial suspension on the roots. Significant percentages of exclusive colonization by the HrcV¯ mutant strain were only obtained after the clay microgranule inoculation technique. Competition for space in xylem vessels is one of the possible explanations for the protective ability of the HrcV¯ mutant strain against subsequent invasion by a pathogenic strain.


2017 ◽  
Vol 30 (12) ◽  
pp. 960-973 ◽  
Author(s):  
Shaoliang Mou ◽  
Zhiqin Liu ◽  
Feng Gao ◽  
Sheng Yang ◽  
Meixia Su ◽  
...  

Homeodomain-leucine zipper class I (HD-Zip I) transcription factors have been functionally characterized in plant responses to abiotic stresses, but their roles in plant immunity are poorly understood. Here, a HD-Zip I gene, CaHZ27, was isolated from pepper (Capsicum annum) and characterized for its role in pepper immunity. Quantitative real-time polymerase chain reaction showed that CaHDZ27 was transcriptionally induced by Ralstonia solanacearum inoculation and exogenous application of methyl jasmonate, salicylic acid, or ethephon. The CaHDZ27-green fluorescent protein fused protein was targeted exclusively to the nucleus. Chromatin immunoprecipitation demonstrated that CaHDZ27 bound to the 9-bp pseudopalindromic element (CAATAATTG) and triggered β-glucuronidase expression in a CAATAATTG-dependent manner. Virus-induced gene silencing of CaHDZ27 significantly attenuated the resistance of pepper plants against R. solanacearum and downregulated defense-related marker genes, including CaHIR1, CaACO1, CaPR1, CaPR4, CaPO2, and CaBPR1. By contrast, transient overexpression of CaHDZ27 triggered strong cell death mediated by the hypersensitive response and upregulated the tested immunity-associated marker genes. Ectopic CaHDZ27 expression in tobacco enhances its resistance against R. solanacearum. These results collectively suggest that CaHDZ27 functions as a positive regulator in pepper resistance against R. solanacearum. Bimolecular fluorescence complementation and coimmunoprecipitation assays indicate that CaHDZ27 monomers bind with each other, and this binding is enhanced significantly by R. solanacearum inoculation. We speculate that homodimerization of CaHZ27 might play a role in pepper response to R. solanacearum, further direct evidence is required to confirm it.


2020 ◽  
Author(s):  
Ning Zhang ◽  
Marina A Pombo ◽  
Hernan G Rosli ◽  
Gregory B Martin

Wall-associated kinases (Waks) are known to be important components of plant immunity against various pathogens including Pseudomonas syringae pv. tomato (Pst) although their molecular mechanisms are largely unknown. In tomato, SlWak1 has been implicated in immunity because its transcript abundance increases significantly in leaves after treatment with the flagellin-derived peptides flg22 and flgII-28, which activate the receptors Fls2 and Fls3, respectively. We generated two SlWak1 tomato mutants (Δwak1) using CRISPR/Cas9 and investigated the role of SlWak1 in tomato-Pst interactions. PTI activated in the apoplast by flg22 or flgII-28 was compromised in Δwak1 plants but PTI at the leaf surface was unaffected. The Δwak1 plants developed fewer callose deposits than wild-type plants but retained the ability to generate reactive oxygen species and activate MAPKs in response to flg22 and flgII-28. The induction of Wak1 gene expression by flg22 and flgII-28 was greatly reduced in a tomato mutant lacking Fls2 and Fls3 but induction of Fls3 gene expression by flgII-28 was unaffected in Δwak1 plants. After Pst inoculation, Δwak1 plants developed disease symptoms more slowly than Δfls2.1/fls2.2/fls3 mutant plants, although both plants ultimately were similarly susceptible. SlWak1 co-immunoprecipitated with both Fls2 and Fls3 independently of flg22/flgII-28 or Bak1. These observations suggest that SlWak1 acts in a complex with Fls2/Fls3 and plays an important role at later stages of the PTI in the apoplast.


2021 ◽  
Vol 22 (3) ◽  
pp. 1455
Author(s):  
Varsha Garg ◽  
Aleksandra Hackel ◽  
Christina Kühn

In potato plants, the phloem-mobile miR172 is involved in the sugar-dependent transmission of flower and tuber inducing signal transduction pathways and a clear link between solute transport and the induction of flowering and tuberization was demonstrated. The sucrose transporter StSUT4 seems to play an important role in the photoperiod-dependent triggering of both developmental processes, flowering and tuberization, and the phenotype of StSUT4-inhibited potato plants is reminiscent to miR172 overexpressing plants. The first aim of this study was the determination of the level of miR172 in sink and source leaves of StSUT4-silenced as well as StSUT4-overexpressing plants in comparison to Solanum tuberosum ssp. Andigena wild type plants. The second aim was to investigate the effect of sugars on the level of miRNA172 in whole cut leaves, as well as in whole in vitro plantlets that were supplemented with exogenous sugars. Experiments clearly show a sucrose-dependent induction of the level of mature miR172 in short time as well as long time experiments. A sucrose-dependent accumulation of miR172 was also measured in mature leaves of StSUT4-silenced plants where sucrose export is delayed and sucrose accumulates at the end of the light period.


1999 ◽  
Vol 89 (12) ◽  
pp. 1233-1239 ◽  
Author(s):  
J. A. McGarvey ◽  
T. P. Denny ◽  
M. A. Schell

One susceptible and two resistant cultivars of tomato were tested for differences in infection by Ralstonia solanacearum and for the subsequent multiplication, colonization, and production of the wilt-inducing virulence factor, exopolysaccharide I (EPS I). Bacterial ingress into the taproot was fastest in the susceptible cv. Marion, followed by the resistant cvs. L285 (fivefold slower) and Hawaii 7996 (15-fold slower). Once inside the taproot, R. solanacearum colonized, to some extent, almost all regions of the resistant and susceptible plants. However, colonization occurred sooner in the susceptible than in the resistant cultivars, as measured by viablecell counts of bacteria in the midstems. Rates of multiplication and maximum bacterial cell densities were also greater in the susceptible than in the resistant cultivars. Growth experiments utilizing xylem fluid from infected and uninfected plants indicated that neither antimicrobial activities nor reduced levels of growth-supporting nutrients in the xylem fluids were responsible for the reduced bacterial multiplication in the resistant cultivars. Quantification of EPS I in the infected plants, using an enzyme-linked immunosorbent assay, revealed that the bacterial populations in the susceptible cultivar produced greater amounts of EPS I per plant than those in the resistant cultivars. Immunofluorescence microscopy using antibodies against either EPS I or R. solanacearum cells revealed that bacteria and EPS I were distributed throughout the vascular bundles and intercellular spaces of the pith in the susceptible cultivar, whereas in the resistant cultivars, bacteria and EPS I were restricted to the vascular tissues.


2018 ◽  
Vol 39 (4) ◽  
Author(s):  
Leixiang Yang ◽  
Tanjing Song ◽  
Qian Cheng ◽  
Lihong Chen ◽  
Jiandong Chen

ABSTRACT Missense p53 mutants often accumulate in tumors and drive progression through gain of function. MDM2 efficiently degrades wild-type p53 but fails to degrade mutant p53 in tumor cells. Previous studies revealed that mutant p53 inhibits MDM2 autoubiquitination, suggesting that the interaction inhibits MDM2 E3 activity. Recent work showed that MDM2 E3 activity is stimulated by intramolecular interaction between the RING and acidic domains. Here, we show that in the mutant p53-MDM2 complex, the mutant p53 core domain binds to the MDM2 acidic domain with significantly higher avidity than wild-type p53. The mutant p53-MDM2 complex is deficient in catalyzing ubiquitin release from the activated E2 conjugating enzyme. An MDM2 construct with extra copies of the acidic domain is resistant to inhibition by mutant p53 and efficiently promotes mutant p53 ubiquitination and degradation. The results suggest that mutant p53 interferes with the intramolecular autoactivation mechanism of MDM2, contributing to reduced ubiquitination and increased accumulation in tumor cells.


2008 ◽  
Vol 8 (2) ◽  
pp. 217-229 ◽  
Author(s):  
Vellaisamy Ramamoorthy ◽  
Edgar B. Cahoon ◽  
Mercy Thokala ◽  
Jagdeep Kaur ◽  
Jia Li ◽  
...  

ABSTRACT The C-9-methylated glucosylceramides (GlcCers) are sphingolipids unique to fungi. They play important roles in fungal growth and pathogenesis, and they act as receptors for some antifungal plant defensins. We have identified two genes, FgMT1 and FgMT2, that each encode a putative sphingolipid C-9 methyltransferase (C-9-MT) in the fungal pathogen Fusarium graminearum and complement a Pichia pastoris C-9-MT-null mutant. The ΔFgmt1 mutant produced C-9-methylated GlcCer like the wild-type strain, PH-1, whereas the ΔFgmt2 mutant produced 65 to 75% nonmethylated and 25 to 35% methylated GlcCer. No ΔFgmt1ΔFgmt2 double-knockout mutant producing only nonmethylated GlcCer could be recovered, suggesting that perhaps C-9-MTs are essential in this pathogen. This is in contrast to the nonessential nature of this enzyme in the unicellular fungus P. pastoris. The ΔFgmt2 mutant exhibited severe growth defects and produced abnormal conidia, while the ΔFgmt1 mutant grew like the wild-type strain, PH-1, under the conditions tested. The ΔFgmt2 mutant also exhibited drastically reduced disease symptoms in wheat and much-delayed disease symptoms in Arabidopsis thaliana. Surprisingly, the ΔFgmt2 mutant was less virulent on different host plants tested than the previously characterized ΔFggcs1 mutant, which lacks GlcCer synthase activity and produces no GlcCer at all. Moreover, the ΔFgmt1 and ΔFgmt2 mutants, as well as the P. pastoris strain in which the C-9-MT gene was deleted, retained sensitivity to the antifungal plant defensins MsDef1 and RsAFP2, indicating that the C-9 methyl group is not a critical structural feature of the GlcCer receptor required for the antifungal action of plant defensins.


Sign in / Sign up

Export Citation Format

Share Document