scholarly journals Effective Water Use Required for Improving Crop Growth Rather Than Transpiration Efficiency

2018 ◽  
Vol 9 ◽  
Author(s):  
Thomas R. Sinclair
1983 ◽  
Vol 34 (6) ◽  
pp. 661 ◽  
Author(s):  
RJ Lawn

The effect of spatial arrangement and population density on growth, dry matter production, yield and water use of black gram (Vigna mungo cv. Regur), green gram (V. radiata cv. Berken), cowpea (V. unguiculata CPI 28215) and soybean (Glycine rnax CP126671), under irrigated, rain-fed fallowed and rain-fed double-cropped culture was evaluated at Dalby in south-eastern Queensland. Equidistant spacings increased initial rates of leaf area index (LAI) development and crop water use compared with 1-m rows at the same population densities. In the irrigated and rain-fed fallowed treatments, where more water was available for crop growth, both seed yields and total crop water use were higher in the equidistant spacings. However, in the double-cropped treatment, where water availability was limited, there was no yield difference between rows and equidistant spacings, primarily because initially faster growth in the latter was offset by more severe water stress later in the season. Higher population density also increased initial crop growth rate and water use, particularly in the equidistant spacings. However, there was no significant yield response to density, presumably because subsequent competition for light/ water offset initial effects on growth. Although absolute yield differences existed between legume cultivars within cultural treatments, there were no significant differential responses to either spatial arrangement or population density among these four cultivars.


2021 ◽  
Author(s):  
Pablo Affortit ◽  
Branly Effa Effa ◽  
Mame Sokhatil Ndoye ◽  
Daniel Moukouanga ◽  
Nathalie Luchaire ◽  
...  

Because water availability is the most important environmental factor limiting crop production, improving water use efficiency, the amount of carbon fixed per water used, is a major target for crop improvement. In rice, the genetic bases of transpiration efficiency, the derivation of water use efficiency at the whole-plant scale, and its putative component trait transpiration restriction under high evaporative demand, remain unknown. These traits were measured in a panel of 147 African rice Oryza glaberrima genotypes, known as potential sources of tolerance genes to biotic and abiotic stresses. Our results reveal that higher transpiration efficiency is associated with transpiration restriction in African rice. Detailed measurements in a subset of highly differentiated genotypes confirmed these associations and suggested that the root to shoot ratio played an important role in transpiration restriction. Genome wide association studies identified marker-trait associations for transpiration response to evaporative demand, transpiration efficiency and its residuals, that links to genes involved in water transport and cell wall patterning. Our data suggest that root shoot partitioning is an important component of transpiration restriction that has a positive effect on transpiration efficiency in African rice. Both traits are heritable and define targets for breeding rice with improved water use strategies.


2020 ◽  
Author(s):  
Yaojun Zhang ◽  
Jiaqi Ding ◽  
Hong Wang ◽  
Lei Su ◽  
Cancan Zhao

Abstract Background: Environmental stress is a crucial factor restricting plant growth as well as crop productivity, thus influencing the agricultural sustainability. Biochar addition is proposed as an effective management to improve crop performance. However, there were few studies focused on the effect of biochar addition on crop growth and productivity under interactive effect of abiotic stress (e.g., drought and salinity). This study was conducted with a pot experiment to investigate the interaction effects of drought and salinity stress on soybean yield, leaf gaseous exchange and water use efficiency (WUE) under biochar addition. Results: Drought and salinity stress significantly depressed soybean phenology (e.g. flowering time) and all the leaf gas exchange parameters, but had inconsistent effects on soybean root growth and WUE at leaf and yield levels. Salinity stress significantly decreased photosynthetic rate, stomatal conductance, intercellular CO2 concentration and transpiration rate by 20.7%, 26.3%, 10.5% and 27.2%, respectively. Lower biomass production and grain yield were probably due to the restrained photosynthesis under drought and salinity stress. Biochar addition significantly enhanced soybean grain yield by 3.1-14.8%. Drought stress and biochar addition significantly increased WUE-yield by 27.5% and 15.6%, respectively, while salinity stress significantly decreased WUE-yield by 24.2%. Drought and salinity stress showed some negative interactions on soybean productivity and leaf gaseous exchange. But biochar addition alleviate the negative effects on soybean productivity and water use efficiency under drought and salinity stress. Conclusions: The results of the present study indicated that drought and salinity stress could significantly depress soybean growth and productivity. There exist interactive effects of drought and salinity stress on soybean productivity and water use efficiency, while we could employ biochar to alleviate the negative effects. We should consider the interactive effects of different abiotic restriction factors on crop growth thus for sustainable agriculture in the future.


2012 ◽  
Vol 26 (2) ◽  
pp. 258-281 ◽  
Author(s):  
Qingwu Xue ◽  
B. A. Stewart ◽  
Mark D. Lazar ◽  
Giovanni Piccinni ◽  
Clay D. Salisbury

2008 ◽  
Vol 59 (4) ◽  
pp. 303 ◽  
Author(s):  
R. R. Young ◽  
P.-J. Derham ◽  
F. X. Dunin ◽  
A. L. Bernardi ◽  
S. Harden

We report exceptional productivity and associated water-use efficiency across seasons for commercial crops of rainfed spring wheat and grain sorghum growing on stored soil water in Vertosols on the Liverpool Plains, central-eastern Australia. Agreement between the independently measured terms of evapotranspiration (ET) and the soil water balance (in-crop rainfall + δsoil water) was achieved within acceptable uncertainty across almost all measurement intervals, to provide a reliable dataset for the analysis of growth and water-use relationships without the confounding influence of water outflow either overland or within the soil. Post-anthesis intrinsic transpiration efficiency (kc ) values of 4.7 and 7.2 Pa for wheat and sorghum, respectively, and grain yields of 8 and 7 t/ha from ET of 450 and 442 mm (1.8 and 1.6 g/m2.mm), clearly demonstrate the levels of productivity and water-use efficiency possible for well-managed crops within an intensive and productive response cropping sequence. The Vertosols in which the crops were grown enabled rapid and apparently unconstrained delivery of significant quantities of subsoil water (34% and 51% of total available) after anthesis, which enabled a doubling of pre-anthesis standing biomass and harvest indices of almost 50%. Durum wheat planted into only 0.30 m of moist soil and enduring lower than average seasonal rainfall, yielded less biomass and grain (2.3 t/ha) with lower water-use efficiency (0.95 g/m2.mm) but larger transpiration efficiency, probably due to reduced stomatal conductance. We argue that crop planting in response to stored soil water and management for high water-use efficiency to achieve high levels of average productivity of crop sequences over time can have a significant effect on both increased productivity and enhanced hydrological stability across alluvial landscapes.


2009 ◽  
Vol 60 (9) ◽  
pp. 870 ◽  
Author(s):  
R. D. Armstrong ◽  
J. Fitzpatrick ◽  
M. A. Rab ◽  
M. Abuzar ◽  
P. D. Fisher ◽  
...  

A major barrier to the adoption of precision agriculture in dryland cropping systems is our current inability to reliably predict spatial patterns of grain yield for future crops for a specific paddock. An experiment was undertaken to develop a better understanding of how edaphic and climatic factors interact to influence the spatial variation in the growth, water use, and grain yield of different crops in a single paddock so as to improve predictions of the likely spatial pattern of grain yields in future crops. Changes in a range of crop and soil properties were monitored over 3 consecutive seasons (barley in 2005 and 2007 and lentils in 2006) in the southern section of a 167-ha paddock in the Mallee region of Victoria, which had been classified into 3 different yield (low, moderate, and high) and seasonal variability (stable and variable) zones using normalised difference vegetation index (NDVI) and historic yield maps. The different management zones reflected marked differences in a range of soil properties including both texture in the topsoil and potential chemical-physical constraints in the subsoil (SSCs) to root growth and water use. Dry matter production, grain yield, and quality differed significantly between the yield zones but the relative difference between zones was reduced when supplementary irrigation was applied to barley in 2005, suggesting that some other factor, e.g. nitrogen (N), may have become limiting in that year. There was a strong relationship between crop growth and the use of soil water and nitrate across the management zones, with most water use by the crop occurring in the pre-anthesis/flowering period, but the nature of this relationship appeared to vary with year and/or crop type. In 2006, lentil yield was strongly related to crop establishment, which varied with soil texture and differences in plant-available water. In 2007 the presence of soil water following a good break to the season permitted root growth into the subsoil where there was evidence that SSCs may have adversely affected crop growth. Because of potential residual effects of one crop on another, e.g. through differential N supply and use, we conclude that the utility of the NDVI methodology for developing zone management maps could be improved by using historical records and data for a range of crop types rather than pooling data from a range of seasons.


2016 ◽  
Vol 177 ◽  
pp. 359-368 ◽  
Author(s):  
Nadia A. Ibraimo ◽  
Nicky J. Taylor ◽  
J. Martin Steyn ◽  
Mark B. Gush ◽  
John G. Annandale
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document