Response of four grain legumes to water stress in south-eastern Queensland. IV. Interaction with sowing arrangement

1983 ◽  
Vol 34 (6) ◽  
pp. 661 ◽  
Author(s):  
RJ Lawn

The effect of spatial arrangement and population density on growth, dry matter production, yield and water use of black gram (Vigna mungo cv. Regur), green gram (V. radiata cv. Berken), cowpea (V. unguiculata CPI 28215) and soybean (Glycine rnax CP126671), under irrigated, rain-fed fallowed and rain-fed double-cropped culture was evaluated at Dalby in south-eastern Queensland. Equidistant spacings increased initial rates of leaf area index (LAI) development and crop water use compared with 1-m rows at the same population densities. In the irrigated and rain-fed fallowed treatments, where more water was available for crop growth, both seed yields and total crop water use were higher in the equidistant spacings. However, in the double-cropped treatment, where water availability was limited, there was no yield difference between rows and equidistant spacings, primarily because initially faster growth in the latter was offset by more severe water stress later in the season. Higher population density also increased initial crop growth rate and water use, particularly in the equidistant spacings. However, there was no significant yield response to density, presumably because subsequent competition for light/ water offset initial effects on growth. Although absolute yield differences existed between legume cultivars within cultural treatments, there were no significant differential responses to either spatial arrangement or population density among these four cultivars.

1997 ◽  
Vol 54 (spe) ◽  
pp. 1-16 ◽  
Author(s):  
M. Calvache ◽  
K Reichardt ◽  
O.O.S. Bacchi ◽  
D. Dourado-Neto

To identify specific growth stages of the common bean crop at which the plant is less sensitive to water stress, in which irrigation could be omitted without significant decrease hi final yield, two field experiments were conducted at "La Tola" University Experimental Station, Tumbaco, Pichincha, Ecuador, on a sandy loam soil (Typic Haplustoll). The climate is tempered and dry (mean air temperature 16°C and mean relative humidity 74%, during the cropping season) 123 and 109 mm of rainfall were recorded during the experimental cropping periods (July to October), of 1992 and 1994, respectively. The treatments consisted of combinations of 7 irrigation regimes including normal watering; full stress; (traditional management practice); single stress at vegetative stage; flowering; seed formation and ripening, and of 2 levels of applied N (20 and 80 kg/ha). These 14 treatment combinations were arranged and analysed in a split-plot design with 4 replications. The plot size was 33.6 m² (8 rows, 7 m long) with a plant population of 120,000 pl/ha. Irrigation treatments were started after uniform germination and crop establishment Soil water content was monitored with a neutron probe down to 0.50 m depth, before and 24 h after each irrigation. The actual evapotranspiration of the crop was estimated by the water-balance technique. Field water efficiency and crop water use efficiency were calculated. Yield data showed that the treatments which had irrigation deficit had lower yield than those that had supplementary irrigation. The flowering stage was the most sensitive to water stress. Nitrogen fertilization significantly increased the number of pods and gram yield. Crop water use efficiency (kg/m³) was the lowest with stress at the flowering period, and the yield response factor (Ky) was higher hi treatments of full stress and stress at flowering. In relation to the traditional management practice adopted by farmers, only treatments of normal watering and stress at maturation had 13 and 10% higher crop water use efficiency, respectively.


2020 ◽  
Author(s):  
Sehouevi Mawuton David Agoungbome ◽  
Nick van de Giesen ◽  
Frank Ohene Annor ◽  
Marie-Claire ten Veldhuis

<p>Africa’s population is growing fast and is expected to double by 2050, meaning the food production must follow the cadence in order to meet the demand. However, one of the major challenges of agriculture in Africa is productivity (World Bank, 2009; IFRI, 2016). For instance, more than 40 million hectares of farmland were dedicated to maize in Africa in 2017 (approx. 20% of world total maize farms), but only 7.4% of the total world maize production came from the African continent (FAO, 2017). This shows the poor productivity which has its causes rooted in lack of good climate and weather information, slow technology uptake and financial support for farmers. In West Africa, where more than 70% of crop production is rain-fed, millions of farmers depend on rainfall, yet the region is one of the most vulnerable and least monitored in terms of climate change and rainfall variability. With a high uncertainty of future climate conditions in the region, one must foresee the big challenges ahead: farmers will be exposed to a lot of damages and losses leading to food insecurity resulting in famine and poverty if measures are not put in place to improve productivity. This study aims at addressing low productivity in agriculture by providing farmers with the right moment to start farming in order to improve efficiency and productivity of crop water use. By analyzing yield response to water availability of specific crops using AquaCrop, the Food and Agriculture Organization crop growth model, we investigate the crop water productivity variability throughout the rainy season and come up with recommendations that help optimize rainfall water use and maximize crop yield.</p>


1992 ◽  
Vol 43 (3) ◽  
pp. 493 ◽  
Author(s):  
DJ Connor ◽  
S Theiveyanathan ◽  
GM Rimmington

The development, growth, water-use and yield of spring (Banks) and winter (Quarrion) cultivars of wheat were measured in response to time of sowing under rainfed conditions. Crop duration shortened in both cultivars (210 to 120 days) as sowing was delayed from May to August with Quarrion maintaining the longer cycle. The difference between cultivars was small (3 days) at the May sowing increasing to 21 days in August, but there were large differences in the relative durations of the component phenophases. Consistent with the shorter cycle, growth of both cultivars decreased as sowing was delayed from May to July (11.3 to 9.9 t ha-1). With August sowing, the pattern continued in Banks (6.7 t ha-1) but not in Quarrion. Seasonal evapotranspiration (ETa) of both cultivars was similar, declining from 306 to 262 mm as sowing was delayed from May to July. On average, Quarrion used more water (34%) of ETa than Banks (19%) during emergence to floral initiation (E-FI), and a corresponding smaller proportion during subsequent phenophases, floral initiation to anthesis (FI-A ) (31 v. 41%) and anthesis to maturity (A-M) (35 v. 41%). The differences between cultivars increased as sowing was delayed from May to August. Maximum evapotranspiration (ETm), estimated by the Penman equation, was evaluated against measurements made with weighed lysimeters. The ratio ETa/ETm fell progressively during the crop cycles and was always smaller for the later-developing Quarrion than for Banks. Crops of both cultivars had adequate water supply during E-FI, mean value of the ratio 0.93, but experienced water stress during FI-A and A-M. Stress was greater in Quarrion (ratios 0.71 and 0.56) than in Banks (0.88 and 0.62). In Quarrion, yield decreased progressively from 4.3 t ha-1 when sown in May to 1.6 t ha-1 in August. In contrast, yield of Banks increased from 3.7 t ha-1 in May to 4.5 t ha-1 in June and then decreased to 3.5 t ha-l in July and 2.6 t ha-1 in August. Crop water-use efficiencies are analysed for ETa (WUE) and for transpiration (TE). Excluding the August-sown crops, they ranged respectively over 11.9 to 14.8 and 25.0 to 32.5 for Quarrion and over 11.0 to 15.7 and 23.3 to 31.6 kg ha-1 mm-1 for Banks. Maximum efficiencies were not achieved by the crops of greatest yield.


1981 ◽  
Vol 17 (4) ◽  
pp. 1095-1108 ◽  
Author(s):  
J. E. Burt ◽  
J. T. Hayes ◽  
P. A. O'Rourke ◽  
W. H. Terjung ◽  
P. E. Todhunter
Keyword(s):  

2017 ◽  
Vol 113 (7/8) ◽  
Author(s):  
Abiodun A. Ogundeji ◽  
Henry Jordaan

Climate change and its impact on already scarce water resources are of global importance, but even more so for water scarce countries. Apart from the effect of climate change on water supply, the chill unit requirement of deciduous fruit crops is also expected to be affected. Although research on crop water use has been undertaken, researchers have not taken the future climate into consideration. They also have focused on increasing temperatures but failed to relate temperature to chill unit accumulation, especially in South Africa. With a view of helping farmers to adapt to climate change, in this study we provide information that will assist farmers in their decision-making process for adaptation and in the selection of appropriate cultivars of deciduous fruits. Crop water use and chill unit requirements are modelled for the present and future climate. Results show that, irrespective of the irrigation system employed, climate change has led to increases in crop water use. Water use with the drip irrigation system was lower than with sprinkler irrigation as a result of efficiency differences in the irrigation technologies. It was also confirmed that the accumulated chill units will decrease in the future as a consequence of climate change. In order to remain in production, farmers need to adapt to climate change stress by putting in place water resources and crop management plans. Thus, producers must be furnished with a variety of adaptation or management strategies to overcome the impact of climate change.


2012 ◽  
Vol 76 (2) ◽  
pp. 607-616 ◽  
Author(s):  
Judy A. Tolk ◽  
Steven R. Evett

2018 ◽  
Vol 10 (12) ◽  
pp. 1867 ◽  
Author(s):  
Bruno Aragon ◽  
Rasmus Houborg ◽  
Kevin Tu ◽  
Joshua B. Fisher ◽  
Matthew McCabe

Remote sensing based estimation of evapotranspiration (ET) provides a direct accounting of the crop water use. However, the use of satellite data has generally required that a compromise between spatial and temporal resolution is made, i.e., one could obtain low spatial resolution data regularly, or high spatial resolution occasionally. As a consequence, this spatiotemporal trade-off has tended to limit the impact of remote sensing for precision agricultural applications. With the recent emergence of constellations of small CubeSat-based satellite systems, these constraints are rapidly being removed, such that daily 3 m resolution optical data are now a reality for earth observation. Such advances provide an opportunity to develop new earth system monitoring and assessment tools. In this manuscript we evaluate the capacity of CubeSats to advance the estimation of ET via application of the Priestley-Taylor Jet Propulsion Laboratory (PT-JPL) retrieval model. To take advantage of the high-spatiotemporal resolution afforded by these systems, we have integrated a CubeSat derived leaf area index as a forcing variable into PT-JPL, as well as modified key biophysical model parameters. We evaluate model performance over an irrigated farmland in Saudi Arabia using observations from an eddy covariance tower. Crop water use retrievals were also compared against measured irrigation from an in-line flow meter installed within a center-pivot system. To leverage the high spatial resolution of the CubeSat imagery, PT-JPL retrievals were integrated over the source area of the eddy covariance footprint, to allow an equivalent intercomparison. Apart from offering new precision agricultural insights into farm operations and management, the 3 m resolution ET retrievals were shown to explain 86% of the observed variability and provide a relative RMSE of 32.9% for irrigated maize, comparable to previously reported satellite-based retrievals. An observed underestimation was diagnosed as a possible misrepresentation of the local surface moisture status, highlighting the challenge of high-resolution modeling applications for precision agriculture and informing future research directions. .


2014 ◽  
Vol 52 (3) ◽  
pp. 183-188 ◽  
Author(s):  
Agung Putra PAMUNGKAS ◽  
Kenji HATOU ◽  
Tetsuo MORIMOTO

Sign in / Sign up

Export Citation Format

Share Document