scholarly journals Overexpression of a Transcription Factor Increases Lipid Content in a Woody Perennial Jatropha curcas

2018 ◽  
Vol 9 ◽  
Author(s):  
Jian Ye ◽  
Chunming Wang ◽  
Yanwei Sun ◽  
Jing Qu ◽  
Huizhu Mao ◽  
...  
2020 ◽  
Vol 21 (23) ◽  
pp. 8923
Author(s):  
Chuan-Jia Xu ◽  
Mei-Li Zhao ◽  
Mao-Sheng Chen ◽  
Zeng-Fu Xu

DEFECTIVE IN ANTHER DEHISCENCE 1 (DAD1), a phospholipase A1, utilizes galactolipids (18:3) to generate α-linolenic acid (ALA) in the initial step of jasmonic acid (JA) biosynthesis in Arabidopsis thaliana. In this study, we isolated the JcDAD1 gene, an ortholog of Arabidopsis DAD1 in Jatropha curcas, and found that it is mainly expressed in the stems, roots, and male flowers of Jatropha. JcDAD1-RNAi transgenic plants with low endogenous jasmonate levels in inflorescences exhibited more and larger flowers, as well as a few abortive female flowers, although anther and pollen development were normal. In addition, fruit number was increased and the seed size, weight, and oil contents were reduced in the transgenic Jatropha plants. These results indicate that JcDAD1 regulates the development of flowers and fruits through the JA biosynthesis pathway, but does not alter androecium development in Jatropha. These findings strengthen our understanding of the roles of JA and DAD1 in the regulation of floral development in woody perennial plants.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Yanwei Sun ◽  
Chunming Wang ◽  
Ning Wang ◽  
Xiyuan Jiang ◽  
Huizhu Mao ◽  
...  

Author(s):  
Xiao Liu ◽  
Dan Zhang ◽  
Jianhui Zhang ◽  
Yuhong Chen ◽  
Xiuli Liu ◽  
...  

Microalgae are considered to be a highly promising source for the production of biodiesel. However, the regulatory mechanism governing lipid biosynthesis has not been fully elucidated to date, and the improvement of lipid accumulation in microalgae is essential for the effective production of biodiesel. In this study,LEAFY COTYLEDON1 (LEC1)fromArabidopsis thaliana, a transcription factor (TF) that affects lipid content, was transferred intoChlorella ellipsoidea. Compared with wild-type (WT) strains, the total fatty acid content and total lipid content ofAtLEC1transgenic strains were significantly increased by 24.20–32.65 and 22.14–29.91%, respectively, under mixotrophic culture conditions and increased by 24.4–28.87 and 21.69–30.45%, respectively, under autotrophic conditions, while the protein content of the transgenic strains was significantly decreased by 18.23–21.44 and 12.28–18.66%, respectively, under mixotrophic and autotrophic conditions. Fortunately, the lipid and protein content variation did not affect the growth rate and biomass of transgenic strains under the two culture conditions. According to the transcriptomic data, the expression of 924 genes was significantly changed in the transgenic strain (LEC1-1). Of the 924 genes, 360 were upregulated, and 564 were downregulated. Based on qRT-PCR results, the expression profiles of key genes in the lipid synthesis pathway, such asACCase,GPDH,PDAT1, andDGAT1, were significantly changed. By comparing the differentially expressed genes (DEGs) regulated byAtLEC1inC. ellipsoideaandArabidopsis, we observed that approximately 59% (95/160) of the genes related to lipid metabolism were upregulated inAtLEC1transgenicChlorella. Our research provides a means of increasing lipid content by introducing exogenous TF and presents a possible mechanism ofAtLEC1regulation of lipid accumulation inC. ellipsoidea.


Planta ◽  
2013 ◽  
Vol 239 (2) ◽  
pp. 511-520 ◽  
Author(s):  
Xiaobo Qin ◽  
Xiaojiang Zheng ◽  
Xiaoqi Huang ◽  
Yifan Lii ◽  
Caixia Shao ◽  
...  

2015 ◽  
Vol 113 ◽  
pp. 403-414 ◽  
Author(s):  
Hui Liu ◽  
Cuiping Wang ◽  
Fan Chen ◽  
Shihua Shen

Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 699
Author(s):  
Tian-Tian Zhang ◽  
Huiying He ◽  
Chuan-Jia Xu ◽  
Qiantang Fu ◽  
Yan-Bin Tao ◽  
...  

Diacylglycerol acyltransferase (DGAT) is the only enzyme that catalyzes the acyl-CoA-dependent acylation of sn-1, 2-diacylglycerol (DAG) to form triacylglycerol (TAG). The two main types of DGAT enzymes in the woody perennial biofuel plant Jatropha curcas, JcDGAT1 and JcDGAT2, were previously characterized only in heterologous systems. In this study, we investigated the functions of JcDGAT1 and JcDGAT2 in J. curcas.JcDGAT1 and JcDGAT2 were found to be predominantly expressed during the late stages of J. curcas seed development, in which large amounts of oil accumulated. As expected, overexpression of JcDGAT1 or JcDGAT2 under the control of the CaMV35S promoter gave rise to an increase in seed kernel oil production, reaching a content of 53.7% and 55.7% of the seed kernel dry weight, respectively, which were respectively 25% and 29.6% higher than that of control plants. The increase in seed oil content was accompanied by decreases in the contents of protein and soluble sugars in the seeds. Simultaneously, there was a two- to four-fold higher leaf TAG content in transgenic plants than in control plants. Moreover, by analysis of the fatty acid (FA) profiles, we found that JcDGAT1 and JcDGAT2 had the same substrate specificity with preferences for C18:2 in seed TAGs, and C16:0, C18:0, and C18:1 in leaf TAGs. Therefore, our study confirms the important role of JcDGAT1 and JcDGAT2 in regulating oil production in J. curcas.


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1068
Author(s):  
Piyada Juntawong ◽  
Pimprapai Butsayawarapat ◽  
Pattralak Songserm ◽  
Ratchaneeporn Pimjan ◽  
Supachai Vuttipongchaikij

Enhancing crop tolerance to waterlogging is critical for improving food and biofuel security. In waterlogged soils, roots are exposed to a low oxygen environment. The group VII ethylene response factors (ERFVIIs) were recently identified as key regulators of plant low oxygen response. Oxygen-dependent N-end rule pathways can regulate the stability of ERFVIIs. This study aims to characterize the function of the Jatropha curcas ERFVIIs and the impact of N-terminal modification that stabilized the protein toward low oxygen response. This study revealed that all three JcERFVII proteins are substrates of the N-end rule pathway. Overexpression of JcERFVII2 conferred tolerance to low oxygen stress in Arabidopsis. In contrast, the constitutive overexpression of stabilized JcERFVII2 reduced low oxygen tolerance. RNA-seq was performed to elucidate the functional roles of JcERFVII2 and the impact of its N-terminal modification. Overexpression of both wildtype and stabilized JcERFVII2 constitutively upregulated the plant core hypoxia-responsive genes. Besides, overexpression of the stabilized JcERFVII2 further upregulated various genes controlling fermentative metabolic processes, oxidative stress, and pathogen responses under aerobic conditions. In summary, JcERFVII2 is an N-end rule regulated waterlogging-responsive transcription factor that modulates the expression of multiple stress-responsive genes; therefore, it is a potential candidate for molecular breeding of multiple stress-tolerant crops.


Sign in / Sign up

Export Citation Format

Share Document