scholarly journals Host-Induced Silencing of FMRFamide-Like Peptide Genes, flp-1 and flp-12, in Rice Impairs Reproductive Fitness of the Root-Knot Nematode Meloidogyne graminicola

2020 ◽  
Vol 11 ◽  
Author(s):  
Alkesh Hada ◽  
Chanchal Kumari ◽  
Victor Phani ◽  
Divya Singh ◽  
Viswanathan Chinnusamy ◽  
...  
1970 ◽  
Vol 9 ◽  
pp. 21-27 ◽  
Author(s):  
Nabin Kumar Dangal ◽  
D. Sharma Poudyal ◽  
S. M. Shrestha ◽  
C. Adhikari ◽  
J. M. Duxbury ◽  
...  

Pot experiment was conducted during July-September 2006 to evaluate some organic amendments such as sesame (Sesamum indicum) biomass, buckwheat (Fagopyrum esculentum) biomass, neem (Azadirachta indica) leaves, chinaberry (Melia azedarch) leaves and chicken manure @ 1, 2 and 3 t ha-1 each against the rice root-knot nematode (Meloidogyne graminicola Golden & Birchfield) in direct seeded rice. The treatments were replicated five times in a randomized complete block design. The number of second stage juveniles (J2) of M. graminicola was significantly low in chicken manure @ 3 t ha-1. The root knot severity index was significantly low in sesame @ 3 t ha-1, chinaberry @ 3, 2 or 1 t ha-1, neem @ 3 t ha-1 and chicken manure @ 2 or 3 t ha-1 amended soil but root lesion severity index was lower only in chicken manure @ 2 t ha-1 treated plots. The fresh shoot weight and length were significantly high in chicken manure amendment @ 2 or 3 t ha-1 at 45th day after seeding. However, the fresh root weight, length, number of leaves and number of J2 recovered from the roots were non-significant. Key words: biomass; juveniles; Meloidogyne graminicola; root-knot severity index; root lesion severity index DOI: 10.3126/njst.v9i0.3160 Nepal Journal of Science and Technology 9 (2008) 21-27


2015 ◽  
Vol 9 (16) ◽  
pp. 1128-1131 ◽  
Author(s):  
Ravindra H ◽  
Sehgal Mukesh ◽  
B Narasimhamurthy H ◽  
S Imran Khan H ◽  
A Shruthi S

2020 ◽  
Vol 96 (7) ◽  
Author(s):  
Anne-Sophie Masson ◽  
Hai Ho Bich ◽  
Marie Simonin ◽  
Hue Nguyen Thi ◽  
Pierre Czernic ◽  
...  

ABSTRACT Meloidogyne graminicola, also known as the rice root-knot nematode, is one of the most damaging plant-parasitic nematode, especially on rice. This obligate soilborne parasite induces the formation of galls that disturb the root morphology and physiology. Its impact on the root microbiome is still not well described. Here, we conducted a survey in Northern Vietnam where we collected infected (with galls) and non-infected root tips from the same plants in three naturally infested fields. Using a metabarcoding approach, we discovered that M. graminicola infection caused modifications of the root bacterial community composition and network structure. Interestingly, we observed in infected roots a higher diversity and species richness (+24% observed ESVs) as well as a denser and more complex co-occurrence network (+44% nodes and +136% links). We identified enriched taxa that include several hubs, which could serve as potential indicators or biocontrol agents of the nematode infection. Moreover, the community of infected roots is more specific suggesting changes in the functional capabilities to survive in the gall environment. We thus describe the signature of the gall microbiome (the ‘gallobiome’) with shifting abundances and enrichments that lead to a strong restructuration of the root microbiome.


PLoS ONE ◽  
2020 ◽  
Vol 15 (9) ◽  
pp. e0239085
Author(s):  
Alkesh Hada ◽  
Tushar K. Dutta ◽  
Nisha Singh ◽  
Balwant Singh ◽  
Vandna Rai ◽  
...  

Plant Disease ◽  
2020 ◽  
Vol 104 (1) ◽  
pp. 186-193 ◽  
Author(s):  
Mujeebur Rahman Khan ◽  
Faheem Ahamad

Surveys of major rice growing districts in the state of Uttar Pradesh in Northern India were conducted for 3 consecutive years during 2013 to 2015 under a government-funded major research project to determine the frequency of occurrence and disease incidence of the rice root-knot nematode, Meloidogyne graminicola, in rice paddy fields. More than 800 paddy fields from 88 Tehsils (divisions within a district) in 18 major rice growing districts in Uttar Pradesh were surveyed, where M. graminicola was associated with root-knot disease in rice paddy fields based on morphological and molecular characterization of juveniles and adults. The highest frequency of disease in rice fields was observed in Aligarh (44.6%), followed by Muzaffarnagar, Shahjahanpur, and Kheri Lakhimpur (29.3, 28.0, and 27.4%, respectively). Maximum disease incidence was also recorded in Aligarh (44.6%), followed by Sultanpur, Mainpuri, and Muzaffarnagar (5.7, 5.2, and 4.5, respectively). Gall index and egg mass index values (on a 0 to 10 scale) were highest in Aligarh (3.5 and 2.1, respectively), followed by Muzaffarnagar (2.6 and 2.0) and Mainpuri (2.3 and 1.8). The average soil population of M. graminicola was highest in Aligarh (3,851 ± 297 second-stage juveniles [J2]/kg of soil), followed by Muzaffarnagar (2,855 ± 602 J2/kg of soil), whereas the lowest population was recorded in Barabanki (695 ± 400 J2/kg of soil) at the time of harvesting. Relative yield losses were also determined, and the highest yield loss attributed to M. graminicola infestation was recorded in Aligarh (47%). The yield loss was linearly correlated with the soil population density of M. graminicola and disease incidence.


Nematology ◽  
2011 ◽  
Vol 13 (5) ◽  
pp. 509-520 ◽  
Author(s):  
Tushar K. Dutta ◽  
Stephen J. Powers ◽  
Brian R. Kerry ◽  
Hari S. Gaur ◽  
Rosane H.C. Curtis

AbstractThe rice root-knot nematode Meloidogyne graminicola normally infects rice, wheat and several other graminaceous plants. Meloidogyne incognita is a serious pest of dicotyledonous crops, although it can infect and reproduce on some cereals. This paper demonstrates and compares host recognition, development and reproduction of these two species of root-knot nematodes on rice and tomato plants. Attraction bioassays in pluronic gel clearly showed that M. incognita preferred tomato roots to rice or mustard roots, whilst M. graminicola was more attracted towards rice compared with tomato or mustard roots. Based on the attraction data from this study, it can be hypothesised that either: i) the blend of attractants and repellents are different in good and poor hosts; or ii) relatively long-range attractants, together with shorter-range repellents, might affect nematode movement patterns. Some host specific attractants might also be involved. Meloidogyne incognita was able to invade and develop to adult female but did not produce eggs in rice roots. By contrast, M. graminicola developed and reproduced faster on both rice and tomato plants compared with M. incognita. Nevertheless, second-stage juveniles of both these root-knot nematodes showed a similar pattern of distribution inside the roots, preferring to accumulate at the root tips of rice or in the vascular cylinder and cortical region of tomato.


Sign in / Sign up

Export Citation Format

Share Document