scholarly journals Networks of Physiological Adjustments and Defenses, and Their Synergy With Sodium (Na+) Homeostasis Explain the Hidden Variation for Salinity Tolerance Across the Cultivated Gossypium hirsutum Germplasm

2020 ◽  
Vol 11 ◽  
Author(s):  
Kevin R. Cushman ◽  
Isaiah C. M. Pabuayon ◽  
Lori L. Hinze ◽  
Megan E. Sweeney ◽  
Benildo G. de los Reyes

The abilities to mobilize and/or sequester excess ions within and outside the plant cell are important components of salt-tolerance mechanisms. Mobilization and sequestration of Na+ involves three transport systems facilitated by the plasma membrane H+/Na+ antiporter (SOS1), vacuolar H+/Na+ antiporter (NHX1), and Na+/K+ transporter in vascular tissues (HKT1). Many of these mechanisms are conserved across the plant kingdom. While Gossypium hirsutum (upland cotton) is significantly more salt-tolerant relative to other crops, the critical factors contributing to the phenotypic variation hidden across the germplasm have not been fully unraveled. In this study, the spatio-temporal patterns of Na+ accumulation along with other physiological and biochemical interactions were investigated at different severities of salinity across a meaningful genetic diversity panel across cultivated upland Gossypium. The aim was to define the importance of holistic or integrated effects relative to the direct effects of Na+ homeostasis mechanisms mediated by GhHKT1, GhSOS1, and GhNHX1. Multi-dimensional physio-morphometric attributes were investigated in a systems-level context using univariate and multivariate statistics, randomForest, and path analysis. Results showed that mobilized or sequestered Na+ contributes significantly to the baseline tolerance mechanisms. However, the observed variance in overall tolerance potential across a meaningful diversity panel were more significantly attributed to antioxidant capacity, maintenance of stomatal conductance, chlorophyll content, and divalent cation (Mg2+) contents other than Ca2+ through a complex interaction with Na+ homeostasis. The multi-tier macro-physiological, biochemical and molecular data generated in this study, and the networks of interactions uncovered strongly suggest that a complex physiological and biochemical synergy beyond the first-line-of defense (Na+ sequestration and mobilization) accounts for the total phenotypic variance across the primary germplasm of Gossypium hirsutum. These findings are consistent with the recently proposed Omnigenic Theory for quantitative traits and should contribute to a modern look at phenotypic selection for salt tolerance in cotton breeding.

1999 ◽  
Vol 37 (1) ◽  
pp. 65-71 ◽  
Author(s):  
Ana Santa-Cruz ◽  
Manuel Acosta ◽  
Ana Rus ◽  
Maria C. Bolarin

Author(s):  
P. V. Kuper ◽  
M. Breunig ◽  
M. Al-Doori ◽  
A. Thomsen

Many of today´s world wide challenges such as climate change, water supply and transport systems in cities or movements of crowds need spatio-temporal data to be examined in detail. Thus the number of examinations in 3D space dealing with geospatial objects moving in space and time or even changing their shapes in time will rapidly increase in the future. Prominent spatio-temporal applications are subsurface reservoir modeling, water supply after seawater desalination and the development of transport systems in mega cities. All of these applications generate large spatio-temporal data sets. However, the modeling, management and analysis of 3D geo-objects with changing shape and attributes in time still is a challenge for geospatial database architectures. In this article we describe the application of concepts for the modeling, management and analysis of 2.5D and 3D spatial plus 1D temporal objects implemented in DB4GeO, our service-oriented geospatial database architecture. An example application with spatio-temporal data of a landfill, near the city of Osnabrück in Germany demonstrates the usage of the concepts. Finally, an outlook on our future research focusing on new applications with big data analysis in three spatial plus one temporal dimension in the United Arab Emirates, especially the Dubai area, is given.


2018 ◽  
Author(s):  
Reza Shokri-Gharelo ◽  
Pouya Motie-Noparvar

Canola (Brassica napus L.) is widely cultivated around the world for the production of edible oils and biodiesel fuel. Despite many canola varieties being described as ‘salt-tolerant’, plant yield and growth decline drastically with increasing salinity. Although many studies have resulted in better understanding of the many important salt-response mechanisms that control salt signaling in plants, detoxification of ions, and synthesis of protective metabolites, the engineering of salt-tolerant crops has only progressed slowly. Genetic engineering has been considered as an efficient method for improving the salt tolerance of canola but there are many unknown or little-known aspects regarding canola response to salinity stress at the cellular and molecular level. In order to develop highly salt-tolerant canola, it is essential to improve knowledge of the salt-tolerance mechanisms, especially the key components of the plant salt-response network. In this review, we focus on studies of the molecular response of canola to salinity to unravel the different pieces of the salt response puzzle. The paper includes a comprehensive review of the latest studies, particularly of proteomic and transcriptomic analysis, including the most recently identified canola tolerance components under salt stress, and suggests where researchers should focus future studies.


2004 ◽  
Vol 142 (3) ◽  
pp. 289-295 ◽  
Author(s):  
M. A. DI RENZO ◽  
N. C. BONAMICO ◽  
D. G. DÍAZ ◽  
M. A. IBAÑEZ ◽  
M. E. FARICELLI ◽  
...  

‘Mal de Río Cuarto’ (MRC) disease, caused by a member of the family Reoviridae belonging to the genus Fijivirus, is considered to be the most damaging viral disease of maize (Zea mays L.) in Argentina. Resistance to MRC disease is a quantitative trait with moderate heritability ranging from 0·44 to 0·56. The objective of this study was to identify simple sequence repeats (SSR) loci linked to quantitative trait loci (QTL) contributing to MRC disease resistance. Two hundred and twenty-seven F3 derived-lines from a cross between a susceptible inbred line, Mo17, and a partially resistant inbred line, BLS14, were evaluated across four Río Cuarto environments. A disease severity index (DSI) based on disease grades was calculated and used to rate F3 derived-lines for their resistance to MRC disease. A subset of parental F2 plants belonging to susceptible and resistant F3 derived-lines from field assessments was assayed for 180 SSR primer pairs to map resistance genes. Fifty-six maize SSR were employed for the testing of linkage among DNA markers and the mapping of QTL through composite interval mapping. Resistance to MRC disease was affected by two QTL on chromosomes 1 and 8 which showed overdominance and dominant gene action, respectively. A simultaneous fit with these QTL in the joint analyses explained 36·2% of the phenotypic variance. In spite of the fact that relative efficiency of marker-assisted selection (MAS) in comparison to phenotypic selection was close to 1, the mapped QTL could improve the efficiency of efforts in breeding for resistance to MRC disease.


Author(s):  
Nadia Bazihizina ◽  
Federico Vita ◽  
Raffaella Balestrini ◽  
Claudia Kiferle ◽  
Stefania Caparrotta ◽  
...  

Abstract Significant variation in epidermal bladder cell (EBC) density and salt tolerance (ST) exists amongst quinoa accessions, suggesting that salt sequestration in EBCs is not the only mechanism conferring ST in this halophyte. In order to reveal other traits that may operate in tandem with salt sequestration in EBCs and whether these additional tolerance mechanisms acted mainly at the root or shoot level, two quinoa (Chenopodium quinoa) accessions with contrasting ST and EBC densities (Q30, low ST with high EBC density versus Q68, with high ST and low EBC density) were studied. The results indicate that responses in roots, rather than in shoots, contributed to the greater ST in the accession with low EBC density. In particular, the tolerant accession had improved root plasma membrane integrity and K+ retention in the mature root zone in response to salt. Furthermore, superior ST in the tolerant Q68 was associated with faster and root-specific H2O2 accumulation and reactive oxygen species-induced K+ and Ca2+ fluxes in the root apex within 30 min after NaCl application. This was found to be associated with the constitutive up-regulation of the membrane-localized receptor kinases regulatory protein FERONIA in the tolerant accession. Taken together, this study shows that differential root signalling events upon salt exposure are essential for the halophytic quinoa; the failure to do this limits quinoa adaptation to salinity, independently of salt sequestration in EBCs.


Sign in / Sign up

Export Citation Format

Share Document