scholarly journals Effects of Nitrogen Addition and Reproductive Effort on Nutrient Resorption of a Sand-Fixing Shrub

2020 ◽  
Vol 11 ◽  
Author(s):  
Lilong Wang ◽  
Yulin Li ◽  
Yulong Duan ◽  
Jie Lian ◽  
Yongqing Luo ◽  
...  

Caragana microphylla is a sand-fixing leguminous shrub with strong resistance to drought, cold, and low soil fertility. As a result, it plays an essential role in combating desertification in northern China, but little is known about its nutrient budget. Nutrient resorption is a key process in plant nutrient conservation and has marked ecological implications for plant fitness and ecosystem nutrient cycling. We studied the effects of both nitrogen (N) addition and reproductive effort on leaf N resorption of C. microphylla in a temperate semi-arid sandy land in China. The results showed that sprouting of the early leaves from over-wintered buds employs a strategy for slow returns on nutrient investment with smaller specific leaf area (SLA) and higher N resorption efficiency, whereas the late leaves, which sprout from current-year buds, employ a strategy for quick returns on nutrient investment with higher SLA and lower N resorption efficiency. N addition significantly increased the N resorption efficiency from early leaves while exerting no impact on late leaves, suggesting that the increased N recovery from early leaves is done to sustain the high N demands of late leaves. Reproductive effort did not affect the N resorption from early or late leaves due to the temporal separation between fruit production and leaf senescence. Taken together, our results demonstrate that C. microphylla has evolved different investment strategies for leaf N in early and late leaves to conserve nutrients and facilitate its growth in desertified environments.

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9915
Author(s):  
Zhen Wang ◽  
Saheed Olaide Jimoh ◽  
Xiliang Li ◽  
Baoming Ji ◽  
Paul C. Struik ◽  
...  

Nutrient resorption from senesced leaves is an important mechanism for nutrient conservation in plants. However, little is known about the effect of grazing on plant nutrient resorption from senesced leaves, especially in semiarid ecosystems. Here, we evaluated the effects of grazing on N and P resorption in the three most dominant grass species in a typical steppe in northern China. We identified the key pathways of grazing-induced effects on N and P resorption efficiency. Grazing increased N and P concentrations in the green leaves of Leymus chinensis and Stipa grandis but not in Cleistogenes squarossa. Both L. chinensis and S. grandis exhibited an increasing trend of leaf N resorption, whereas C. squarrosa recorded a decline in both leaf N and P resorption efficiency under grazing. Structural equation models showed that grazing is the primary driver of the changes in N resorption efficiency of the three dominant grass species. For L. chinensis, the P concentration in green and senesced leaves increased the P resorption efficiency, whereas the senesced leaf P concentration played an important role in the P resorption efficiency of C. squarrosa. Grazing directly drove the change in P resorption efficiency of S. grandis. Our results suggest that large variations in nutrient resorption patterns among plant species depend on leaf nutritional status and nutrient-use strategies under overgrazing, and indicate that overgrazing may have indirect effects on plant-mediated nutrient cycling via inducing shifts in the dominance of the three plant species.


Ecology ◽  
2018 ◽  
Vol 99 (5) ◽  
pp. 1227-1235 ◽  
Author(s):  
Juha Mikola ◽  
Tarja Silfver ◽  
Ulla Paaso ◽  
Boy J. M. H. Possen ◽  
Matti Rousi

2020 ◽  
Author(s):  
Jinpei Gao ◽  
Quan Li ◽  
Junbo Zhang ◽  
Kunkai Cui ◽  
Zhizhuang Wu ◽  
...  

Abstract Background: While we know that N and biochar fertilizers affect soil nutrient concentrations and plant nutrient uptake, our understanding of how combined applications of N and biochar affect plant nutrient resorption in plantations is largely inadequate. A field experiment was conducted to investigate the effects of N (0, 30, 60, and 90 kg N ha-1 yr-1 or N0, N30, N60, and N90), in combination with biochar (0, 20, and 40 t biochar ha-1 or BC0, BC20, and BC40) on N and P resorption by young and mature bamboo plants as well as the relationship between nutrient resorption and leaf nutrient and soil concentrations. Fresh and senescent leaf samples were collected in July 2016 and March 2017, respectively.Results: Young bamboo showed significantly greater foliar N resorption efficiency (NRE) and P resorption efficiency (PRE) than mature bamboo. N additions alone significantly increased the N resorption proficiency (NRP) and P resorption proficiency (PRP) but decreased the NRE and PRE of both young and mature bamboo. In both the N-free (control) and N addition treatments, biochar amendments significantly reduced the foliar NRE and PRE of young bamboo but had the opposite effect on mature bamboo. Foliar NRE and PRE were significantly correlated with fresh leaf N and P concentrations and soil total P concentration. Conclusion: Our findings suggest that N addition inhibits plant nutrient resorption and alters the nutrient-use strategy of young and mature bamboo from “conservative consumption” to “resource spending.” Furthermore, biochar amendment enhanced the negative priming effect of N addition on nutrient resorption of young bamboo but reduced the negative effect on that of mature bamboo. This study provides new insights into the combined effects of N and biochar additions on the nutrient resorption of Moso bamboo and may assist in improving fertilization strategies in Moso bamboo plantations.


2021 ◽  
Author(s):  
Dalong Jiang ◽  
Qian Li ◽  
Qinghong Geng ◽  
Menghua Zhang ◽  
Chonghua Xu ◽  
...  

Abstract Aims Leaf nutrient resorption is sensitive to changes in soil nutrients. However, the effects of N deposition on nutrient resorption efficiency (NuRE) in plant macro-nutrients remain unclear. Poplar (Populus deltoids) is one of the most extensively cultivated hardwood species worldwide. We explored general patterns and dominant drivers of NuRE and stoichiometry of poplar plantations in response to N addition. Methods We conducted a 4-year N-addition experiment to explore NuRE and stoichiometric responses to N addition in two poplar (Populus deltoids) plantations (8- and 12-year-old stands) in a coastal region of eastern China. We measured soil and foliar (green and senesced leaves) concentrations of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) for a series of N addition treatments including N0 (0 kg N ha ‒1 yr ‒1), N1 (50 kg N ha ‒1 yr ‒1), N2 (100 kg N ha ‒1 yr ‒1), N3 (150 kg N ha ‒1 yr ‒1), and N4 (300 kg N ha ‒1 yr ‒1). Important Findings Consistent for (both) 8- and 12-year-old stands, N addition did not affect the NuRE and stoichiometry (with the exception of CaRE and CaRE:MgRE ratio). NRE-PRE scaling slopes were consistently less than 1.0 under N addition. These results suggest that NRE generally decouples from PRE within each N treatment. Moreover, these results point to robust control of green leaf nutritional status on nutrient resorption processes as indicated by the positive relationships between nutrient resorption efficiency and green leaf nutrient concentrations. Our findings provided a direct evidence that growth in 12-year-old poplar plantations was N-limited in a coastal region of eastern China.


2015 ◽  
Vol 394 (1-2) ◽  
pp. 87-98 ◽  
Author(s):  
Patricia González-Zurdo ◽  
Alfonso Escudero ◽  
Sonia Mediavilla

2014 ◽  
Vol 955-959 ◽  
pp. 3687-3690
Author(s):  
Kai Yan ◽  
Changqun Duan ◽  
Long Zhang ◽  
Xin Xv ◽  
Change Liu ◽  
...  

Understanding the leaf N, P concentrations and nutrient resorption of plants growing in phosphorus–enriched soil (PES) can provide new data for ecostoichiometric research and ecological model building. In this study, 117 green leaves and 53 senesced leaves of dominant plants in PES in the Dianchi Lake watershed, SW China, were sampled. Plants in PES had high fresh leaf P (4.60mg/g), senesced leaf P (2.70mg/g), and low fresh leaf N: P (4.41), senesced leaf N: P (3.21). P resorption efficiency (PRE) (25.09%) was significantly lower than N resorption efficiency (NRE) (52.68%). Forbs had the highest P content in fresh (5.35mg/g) and senesced leaf (3.25mg/g) among plants forms. Although NRE was varied among plant forms, the difference in PRE was not significant. In conclusion, PES has a tremendous impact on the patterns of leaf N, P and nutrient resorption of different plant forms, those results were different from general results.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jinpei Gao ◽  
Quan Li ◽  
Junbo Zhang ◽  
Kunkai Cui ◽  
Zhizhuang Wu ◽  
...  

Nutrient resorption can affect plant growth, litter decomposition, and nutrient cycling. Although the effects of nitrogen (N) and biochar fertilizers on soil nutrient concentrations and plant nutrient uptake have been studied, an understanding of how combined applications of N and biochar affect plant nutrient resorption in plantations is lacking. In this study, we applied N (0, 30, 60, and 90 kg N ha−1 yr−1 defined as N0, N30, N60, and N90, respectively) and biochar (0, 20, and 40 t biochar ha−1 defined as BC0, BC20, and BC40, respectively) to the soil of a Moso bamboo plantation. We investigated the effects of these treatments on N and phosphorus (P) resorption by young and mature bamboo plants, as well as the relationships between nutrient resorption and leaf and soil nutrient concentrations. Young bamboo showed significantly greater foliar N resorption efficiency (NRE) and P resorption efficiency (PRE) than mature bamboo. N addition alone significantly increased the N resorption proficiency (NRP) and P resorption proficiency (PRP) but significantly decreased the NRE and PRE of both young and mature bamboo. In both the N-free and N-addition treatments, biochar amendments significantly reduced the foliar NRE and PRE of young bamboo but had the opposite effect on mature bamboo. Foliar NRE and PRE were significantly negatively correlated with fresh leaf N and P concentrations and soil total P concentration but significantly positively correlated with soil pH. Our findings suggest that N addition inhibits plant nutrient resorption and alters the nutrient-use strategy of young and mature bamboo from “conservative consumption” to “resource spending.” Furthermore, biochar amendment enhanced the negative effect of N addition on nutrient resorption in young bamboo but reduced the negative effect on that of mature bamboo under N-addition treatments. This study provides new insights into the combined effects of N and biochar on the nutrient resorption of Moso bamboo and may assist in improving fertilization strategies in Moso bamboo plantations.


2021 ◽  
Author(s):  
Jiaxi Wang ◽  
Mercedes Uscola ◽  
Guolei Li

Abstract Aims Soil fertility and resorption of leaf compounds in the fall can influence resource buildup in plants. However, whether intraspecific differences in seedling size can affect nutrient reserve buildup is unknown. This study examined the effects of seedling size and fall fertilization on the uptake and resorption of nitrogen (N), as well as the allocation of non-structural carbohydrates (NSC) and N in cultivated Quercus variabilis Blume. Methods After the formation of terminal buds (T1), seedlings were stratified into small (shoot height < 30 cm) and large seedlings. During the hardening period, seedlings were treated with three different rates of 15N-enriched fertilizer (0, 12, or 24 mg N seedling− 1) and monitored until leaf fall (T2). Results Small seedlings had lower N resorption efficiency and resorbed proportionally less N than large seedlings. Fall fertilization notably improved N and NSC reserves, without reducing N resorption efficiency. Large seedlings allocated proportionally less N to leaves than small seedlings although both sizes seedlings absorbed similar amounts of N from fall fertilization. The priority perennial organ for NSC allocation was roots, while N allocation was dependent on the phenological growth stage of the seedling. Roots were prioritized during the rapid growth phase, while stems were prioritized during the hardening period. Conclusions Under same fertilizer regime during the growth phase, large seedlings tends to have lower N concentration and have higher resorption efficiency compare to small seedlings, fall fertilization can increase N storage in large seedlings and NSC levels in both seedling sizes, without affecting growth.


2012 ◽  
Vol 58 (No. 10) ◽  
pp. 446-451 ◽  
Author(s):  
L.J. Li ◽  
D.H. Zeng ◽  
R. Mao ◽  
Z.Y. Yu

A factorial nitrogen (N) &times; phosphorus (P) addition experiment was conducted to evaluate responses of leaf nutrient resorption to increased soil N and P availability in a semiarid grassland in Keerqin Sandy Lands, China. Four plant species were selected, among which Artemisia scoparia and Chenopodium acuminatum were dominant species in the control and P-added plots, and Cannabis sativa and Phragmites communis were dominant in the N- and N + P-treated plots. Results showed that N and P resorption varied substantially among species (P &lt; 0.01). A general trend of decrease in N resorption efficiency (NRE) and N resorption proficiency (NRP) was observed in response to increased soil N availability for all species, except P. communis only for NRE. Similarly, P resorption proficiency (PRP) decreased in response to P addition for all species, whereas P resorption efficiency (PRE) was not affected by P addition. Species responded differently in terms of PRE and PRP to N addition, whereas no changes in NRE and NRP occurred in response to P addition except P. communis for NRE. Our results suggest that increased soil nutrient availability can influence plant-mediated nutrient cycling directly by changing leaf nutrient resorption and indirectly by altering species composition in the sandy grassland. &nbsp;


Sign in / Sign up

Export Citation Format

Share Document