scholarly journals Remarkable Similarity in Timing of Absorptive Fine-Root Production Across 11 Diverse Temperate Tree Species in a Common Garden

2021 ◽  
Vol 11 ◽  
Author(s):  
Jennifer M. Withington ◽  
Marc Goebel ◽  
Bartosz Bułaj ◽  
Jacek Oleksyn ◽  
Peter B. Reich ◽  
...  

Long-term minirhizotron observations of absorptive fine roots provide insights into seasonal patterns of belowground root production and carbon dynamics. Our objective was to compare root dynamics over time across mature individuals of 11 temperate trees species: five evergreen and six deciduous. We analyzed the timing and growth on 1st-and 2nd-order roots in minirhizotron images down to a vertical depth of 35 cm, as well as monthly and total annual length production. Production patterns were related to total annual precipitation of the actual and previous year of root production over 6 years. The main or largest peak of annual fine-root production occurred between June and September for almost all species and years. In most years, when peaks occurred, the timing of peak root production was synchronized across all species. A linear mixed model revealed significant differences in monthly fine-root length production across species in certain years (species x year, P < 0.0001), which was strongly influenced by three tree species. Total annual root production was much higher in 2000–2002, when there was above-average rainfall in the previous year, compared with production in 2005–2007, which followed years of lower-than-average rainfall (2003–2006). Compared to the wetter period all species experienced a decline of at least 75% in annual production in the drier years. Total annual root length production was more strongly associated with previous year’s (P < 0.001) compared with the actual year’s precipitation (P = 0.003). Remarkably similar timing of monthly absorptive fine-root growth can occur across multiple species of diverse phylogeny and leaf habit in a given year, suggesting a strong influence of extrinsic factors on absorptive fine-root growth. The influence of previous year precipitation on annual absorptive fine-root growth underscores the importance of legacy effects in biological responses and suggests that a growth response of temperate trees to extreme precipitation or drought events can be exacerbated across years.

2007 ◽  
Vol 37 (10) ◽  
pp. 1954-1965 ◽  
Author(s):  
Oscar J. Valverde-Barrantes

Although significant advances have been made in understanding terrestrial carbon cycling, there is still a large uncertainty about the variability of carbon (C) fluxes at local scales. Using a carbon mass-balance approach, I investigated the relationships between fine detritus production and soil respiration for five tropical tree species established on 16-year-old plantations. Total fine detritus production ranged from 0.69 to 1.21 kg C·m–2·year–1 with significant differences among species but with no correlation between litterfall and fine-root growth. Soil CO2 emissions ranged from 1.61 to 2.36 kg C·m–2·year–1 with no significant differences among species. Soil respiration increased with fine-root production but not with litterfall, suggesting that soil C emissions may depend more on belowground inputs or that both fine root production and soil respiration are similarly influenced by an external factor. Estimates of root + rhizosphere respiration comprised 52% of total soil respiration on average, and there was no evidence that rhizosphere respiration was associated with fine-root growth rates among species. These results suggest that inherent differences in fine-root production among species, rather than differences in aboveground litterfall, might play a main role explaining local-scale, among-forest variations in soil C emissions.


2020 ◽  
Vol 33 (2) ◽  
pp. 458-469
Author(s):  
EUNICE MAIA DE ANDRADE ◽  
GILBERTO QUEVEDO ROSA ◽  
ALDENIA MENDES MASCENA DE ALMEIDA ◽  
ANTONIO GIVANILSON RODRIGUES DA SILVA ◽  
MARIA GINA TORRES SENA

ABSTRACT Seasonally dry tropical forests (SDTF) usually present dry seasons of eight or more months. Considering the concerns about the resilience of SDTF to climate changes, the objective of this study was to evaluate the effect of the rainfall regime on fine root growth in a SDTF. The experiment started at the end of the wet season (July 2015), when fine roots were evaluated and ingrowth cores were implemented. The temporal growth of fine roots in the 0-30 cm soil layer was monitored, considering the 0-10, 10-20, and 20-30 cm sublayers, through six samplings from November 2015 to July 2017. The characteristics evaluated were fine root biomass, fine root length, fine root specific length, and fine root mean diameter. The significances of the root growths over time and space were tested by the Kruskal-Wallis test (p<0.05). Fine roots (Ø<2 mm) were separated and dried in an oven (65 °C) until constant weight. The root length was determined using the Giaroots software. The fine root biomass in July 2015 was 7.7±5.0 Mg ha-1 and the length was 5.0±3.2 km m-2. Fine root growth in SDTF is strongly limited by dry periods, occurring decreases in biomass and length of fine roots in all layers evaluated. Fine root growth occurs predominantly in rainy seasons, with fast response of the root system to rainfall events, mainly in root length.


2020 ◽  
Vol 50 (5) ◽  
pp. 510-518
Author(s):  
Tapani Repo ◽  
Timo Domisch ◽  
Jouni Kilpeläinen ◽  
Sirpa Piirainen ◽  
Raimo Silvennoinen ◽  
...  

Excess water in the rooting zone critically reduces tree growth and may even kill trees; however, the relative importance of damage to roots versus aboveground parts and the time course of damage are not well understood. We studied the dynamics of fine-root growth and mortality of 7-year-old Scots pine (Pinus sylvestris L.) saplings affected by a 5-week period of waterlogging (WL) during the growing season. Two out of six WL-exposed saplings survived the treatment. After 1–2 weeks of WL, the mortality of the first-order short roots (usually mycorrhizas) started to increase and the production of these roots started to decrease. WL decreased the longevity of short and long roots. Total root length (especially of fine roots with a diameter < 0.5 mm), specific fine-root length, total root dry mass (including stump), and reverse-flow root hydraulic conductance were lower in WL saplings than in control saplings at the end of the experiment; however, several root traits were similar in control and surviving WL saplings. Because of the high importance of fine roots for tree growth and carbon sequestration, their responses to elevated water tables should be considered in sustainable use and management of boreal peatland forests, for example, by continuous cover forestry and (or) ditch network maintenance.


1981 ◽  
Vol 32 (3) ◽  
pp. 453 ◽  
Author(s):  
A Pinkerton ◽  
JR Simpson

The root and shoot growth of four tropical and two temperate summer-growing legumes were assessed when plants were grown in deep profiles of an acidic soil modified by additions of calcium carbonate. Species tested over three harvests were Desmodium intortum, Glycine wightii, Stylosanthes humilis (Townsville stylo), Macvoptilium atvopuvpureum (Siratro), Trifolium repens and Medicago sativa (lucerne). There were large and more immediate effects on root growth, particularly on fine root length, than on shoot growth. The species differed in their root responses to lime, the tropical species in general being more tolerant of subsoil acidity than the temperate species. There were marked differences between species in their responses when expressed as the ratio of fine root length to total shoot weight. The ratio of root weight to shoot weight showed much less variation with lime rate, and it is suggested that the ratio of fine root length to shoot weight is the better indicator of tolerance to subsoil acidity. S. humilis showed little response to lime at any time, and was notable for its length of fine root. Siratro grew well at first but later there was little increase in shoot weight or in length of fine root, although tap root weight increased greatly. Roots of D. intorturn, T. repens and lucerne were slow to penetrate beyond 55 cm depth. At later harvests the root lengths of these species and of G. wightii were highly responsive to lime. Agronomic implications of the results are discussed.


2017 ◽  
Vol 10 (1) ◽  
pp. 146-157 ◽  
Author(s):  
Zhenkai Sun ◽  
Xiaojuan Liu ◽  
Bernhard Schmid ◽  
Helge Bruelheide ◽  
Wensheng Bu ◽  
...  

2016 ◽  
Vol 412 (1-2) ◽  
pp. 299-316 ◽  
Author(s):  
Rabbil Bhuiyan ◽  
Kari Minkkinen ◽  
Heljä-Sisko Helmisaari ◽  
Paavo Ojanen ◽  
Timo Penttilä ◽  
...  

HortScience ◽  
2017 ◽  
Vol 52 (4) ◽  
pp. 503-512 ◽  
Author(s):  
Haishan An ◽  
Feixiong Luo ◽  
Ting Wu ◽  
Yi Wang ◽  
Xuefeng Xu ◽  
...  

Fine root (≤2 mm in diameter) systems play a pivotal role in water and mineral uptake in higher plants. However, the impact of fine root architecture on tree growth and development is not fully understood, especially in apple trees. Here, we summarize a 6-year-trial study using minirhizotrons to investigate the relationships between fine root production, mortality, and longevity in ‘Red Fuji’ trees grafted on five different rootstocks/interstems. Based on root length density (RLD), fine root production and mortality were markedly lower in ‘Red Fuji’ trees growing on dwarfing M.9 (M.9) and Shao series no. 40 (SH.40) rootstocks than in trees on standard Malus robusta ‘Baleng Crab’ (BC) rootstock. The use of M.9 and SH.40 as interstems led to an extensive reduction in fine root production and mortality in comparison with BC rootstock. Root number density (RND), but not average root length (ARL), showed similar patterns to RLD. About one-half of fine roots in ‘Red Fuji’ tree growing on M.9 were scattered within the top 0–20 cm of topsoil, indicating shallow root system in M.9, whereas in trees on BC, 55.15% of fine roots were distributed between 100- and 150-cm soil depth, indicating a deep root architecture. The addition of interstems did not alter fine root soil-depth distribution. For all rootstocks/interstems, fine roots with a life span of less than 80 days were generated in spring and summer, but fine roots which lived for more than 81 days were produced almost all the year round. In conclusion, lower fine root numbers were associated with the dwarfing effect in dwarfing rootstocks/interstems, but ARL and shallower rooting were not.


Sign in / Sign up

Export Citation Format

Share Document