scholarly journals The Role of Root Morphology and Pulling Direction in Pullout Resistance of Alfalfa Roots

2021 ◽  
Vol 12 ◽  
Author(s):  
Qihong Yang ◽  
Chaobo Zhang ◽  
Pengchong Liu ◽  
Jing Jiang

There is a growing consensus on soil conservation by mechanics of plant root system. In order to further study how root system exerts its mechanical properties during soil reinforcing process and which morphological indicator is suitable for reflecting pullout resistance, in-situ vertical pullout test (VPT) and 45° oblique pullout test (OPT) were performed on alfalfa (Medicago sativa L.) roots in the loess area. The results showed that the failure mode of alfalfa roots was pulling out in this study. The peak pullout resistance of the roots increased with root diameter, root length and root surface area, and power law relationships were observed between the pullout resistance and the morphological indices: root diameter, root length and root surface area. The maximum gray relational degree of the morphological indices was 0.841 (VPT) and 0.849 (OPT) for root surface area, suggesting that root surface area was a more significant root morphological index affecting root pullout resistance than root diameter and root length, and was more suitable for characterizing the difference in peak pullout resistance of roots with different size. The index could be used to validate the methods for predicting root pullout capacity. The value of peak pullout resistance was 17.2 ± 2.3 N in VPT test and 28.2 ± 3.8 N (mean ± SE) in OPT test, and a significant difference was observed between the two tests, which showed that the pulling direction significantly affected the peak pullout resistance of alfalfa roots. Vertical pullout test, giving the safety margin, was suggested to determine root pullout resistance for estimate of root reinforcement.

2018 ◽  
Vol 28 (5) ◽  
pp. 629-636 ◽  
Author(s):  
Matthew B. Bertucci ◽  
David H. Suchoff ◽  
Katherine M. Jennings ◽  
David W. Monks ◽  
Christopher C. Gunter ◽  
...  

Grafting of watermelon (Citrullus lanatus) is an established production practice that provides resistance to soilborne diseases or tolerance to abiotic stresses. Watermelon may be grafted on several cucurbit species (interspecific grafting); however, little research exists to describe root systems of these diverse rootstocks. A greenhouse study was conducted to compare root system morphology of nine commercially available cucurbit rootstocks, representing four species: pumpkin (Cucurbita maxima), squash (Cucurbita pepo), bottle gourd (Lagenaria siceraria), and an interspecific hybrid squash (C. maxima × C. moschata). Rootstocks were grafted with a triploid watermelon scion (‘Exclamation’), and root systems were compared with nongrafted (NG) and self-grafted (SG) ‘Exclamation’. Plants were harvested destructively at 1, 2, and 3 weeks after transplant (WAT), and data were collected on scion dry weight, total root length (TRL), average root diameter, root surface area, root:shoot dry-weight ratio, root diameter class proportions, and specific root length. For all response variables, the main effect of rootstock and rootstock species was significant (P < 0.05). The main effect of harvest was significant (P < 0.05) for all response variables, with the exception of TRL proportion in diameter class 2. ‘Ferro’ rootstock produced the largest TRL and root surface area, with observed values 122% and 120% greater than the smallest root system (‘Exclamation’ SG), respectively. Among rootstock species, pumpkin produced the largest TRL and root surface area, with observed values 100% and 82% greater than those of watermelon, respectively. These results demonstrate that substantial differences exist during the initial 3 WAT in root system morphology of rootstocks and rootstock species available for watermelon grafting and that morphologic differences of root systems can be characterized using image analysis.


Plant Methods ◽  
2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Yu Liu ◽  
Ji Qian ◽  
Xin Yang ◽  
Bao Di ◽  
Juan Zhou

Abstract Background Traditional measurements of apple seedling roots often rely on manual measurements and existing root scanners on the market. Manual measurement requires a lot of labor and time, and subjective reasons may cause the uncertainty of data; root scanners have limited scanning size and expensive. In case of fruit roots, coverage and occlusion issues will occur, resulting in inaccurate results, but our research solved this problem. Results The background plate was selected according to the color of the seedling roots; the image of the roots of the collected apple seedlings was preprocessed with Vision Development Module by combining image and Labview. The root surface area, average root diameter, root length and root volume of apple seedlings were measured by combining root characteristic parameters algorithm. In order to verify the effectiveness of the proposed method, a set of measurement system for root morphology of apple seedlings was designed, and the measurement result was compared with the Canadian root system WinRHIZO 2016 (Canada). With application of SPSS v22.0 analysis, the significance P > 0.01 indicated that the difference was not significant. The relative error of surface area was less than 0.5%. The relative error of the average diameter and length of the root system was less than 0.1%, and the relative error of the root volume was less than 0.2%. Conclusions It not only proved that the root surface area, average root diameter, root length and root volume of apple seedlings could be accurately measured by the method described herein, which was handy in operation, but also reduced the cost by 80–90% compared with the conventional scanner.


HortScience ◽  
2020 ◽  
Vol 55 (8) ◽  
pp. 1272-1279
Author(s):  
Dennis N. Katuuramu ◽  
W. Patrick Wechter ◽  
Marcellus L. Washington ◽  
Matthew Horry ◽  
Matthew A. Cutulle ◽  
...  

Root traits are an important component for productive plant performance. Roots offer immediate absorptive surfaces for water and nutrient acquisition and are thus critical to crop growth and response to biotic and abiotic stresses. In addition, roots can provide the first line of defense against soilborne pathogens. Watermelon crop performance is often challenged by inclement weather and environmental factors. A resilient root system can support the watermelon crop’s performance across a diverse range of production conditions. In this study, 335 four-day-old watermelon (Citrullus spp.) seedlings were evaluated for total root length, average root diameter, total root surface area, and total root volume. Total root length varied from 8.78 to 181 cm (20.6-fold variation), total surface area varied from 2 to 35.5 cm2, and average root diameter and total root volume had an 8- and 29.5-fold variation, respectively. Genotypes PI 195927 (Citrullus colocynthis) and PI 674448 (Citrullus amarus) had the largest total root length values. Accessions PI 674448 and PI 494817 (C. amarus) had the largest total root surface area means. Watermelon cultivars (Citrullus lanatus) had a relatively smaller root system and significantly fewer fibrous roots when compared with the roots of the other Citrullus spp. Positive genetic correlations were identified among total root length, total root surface area, and total root volume. This genetic information will be useful in future breeding efforts to select for multiple root architecture traits in watermelon. Germplasm identified in this study that exhibit superior root traits can be used as parental choices to improve watermelon for root traits.


Author(s):  
Ömer Sarı

The study was carried out to determine the root architectural characteristics of the one-year saplings of two species of boxwood (Buxus sempervirens L. and Buxus balearica Lam.), which are endangered and natural plants of Turkey, in the greenhouse environment using the WinRhizo root analysis program and scanner. Total root length (cm), root surface area (cm2), root volume (cm3), average root diameter (mm), number of tips, number of forks and number of root crossings were determined in the study. According to the results of the study, the increase in temperature and decrease in humidity values in the second year of both species were effective on the root architectural features. As a result of this effect, the second year root length (3810 cm), number of root tips (2299), number of forks (7007) and number of root crossings (696) increased, root diameter (1.4 mm), root surface area (2158 cm2) and root volume (8 cm3) decreased. As a result, it has been concluded that species can make changes in their root parameters to adapt to different conditions and their adaptability is high. In general, the best results in root architectural parameters were obtained from Buxus balearica on the basis of species.


HortScience ◽  
2018 ◽  
Vol 53 (12) ◽  
pp. 1750-1756
Author(s):  
Zhipei Feng ◽  
Xitian Yang ◽  
Hongyan Liang ◽  
Yuhua Kong ◽  
Dafeng Hui ◽  
...  

Air-root pruning (AP) has been identified as an effective technique for enhancing root growth and development. However, little information is available regarding the temporal changes in the root system of Platycladus orientalis (L.) Franco under AP. We performed integrated morphological, physiological, and anatomical analyses of the roots in P. orientalis seedlings that had been air-root pruned for 120, 150, and 190 days. Our results found that the whole root length, number of root tips, and root surface area of AP seedlings at 120, 150, and 190 days were higher than those of the non–root-pruned (NP) seedlings (P < 0.05), but the average root diameter did not differ significantly between the treatments. Compared with NP treatment, AP increased the root length, surface area, number of tips, and specific root length of the ≤0.5 mm diameter roots in P. orientalis during the experimental periods (P < 0.05), but those of 0.5- to 1-mm-diameter roots were only increased on day 190 (P < 0.05). The AP plants also exhibited higher root vitality and proportion of live fine roots than the NP plants (P < 0.05). Our anatomical evaluation of the ≤0.5 mm roots and taproots revealed features that could account for the morphological differences found between the AP and NP plants. In conclusion, our results indicate that air-root pruning induced changes in the roots that promote the root system development in P. orientalis compared with the NP treatment during the experimental period. These results thus provide experimental evidence to support the use of AP in P. orientalis seedlings.


2021 ◽  
Vol 271 ◽  
pp. 04012
Author(s):  
Jiong Wu ◽  
Changdi Ke ◽  
Yanqun Zu ◽  
Yu Din ◽  
Taiting Li

For studying the physiological response of two different Dianthus caryophyllus cultivars on Cd stress, pot experiment was carried out to measure proline and glutathione in leaves, five types of organic acids in root exudates (oxalic acid, malic acid, acetic acid, tartaric acid, citric acid), soluble sugars and free amino acids, root length, root surface area, root volume, root projected area and Cadmium content in soil, plant roots and aboveground. According to the effects of cadmium stress on the physiological and biochemical characteristics of two Dianthus caryophyllus, the results showed that: the growth of two cultivars are affected, “Master” and “Xiao Yan” are manifested as plant height, leaf, flower buds and biomass decreased, but the “Master” by the stronger inhibitory effect. The root length, total root surface area, total root projected area, and average root diameter of the “Master” increased under cadmium stress, but the root volume decreased. However, the root length, total root surface area, root volume, and root projected area of the “Xiao Yan” under cadmium stress decreased, while the average root diameter increased. The glutathione in the leaves of the two cultivars decreased, the proline content of the leaves of the “Xiao Yan” increased, while that of the “Master” decreased. In the root exudates, the free amino acid content of the two cultivars are reduced, and the secretion of organic acids is also inhibited (except for the citric acid secreted in the “Master”), while the soluble sugar content in the root exudates is expressed as “Xiao Yan” increased, and the “Master” decreased. According to the physiological response to the two cultivars under cadmium stress, the “Xiao Yan” is more suitable for soil restoration in the mining area of Lanping area.


2020 ◽  
Vol 48 (4) ◽  
pp. 2263-2278
Author(s):  
Hang ZHOU ◽  
Dianfeng ZHENG ◽  
Naijie Feng

Spatial and temporal distribution of roots of mung bean and soybean originated from different geographical backgrounds is an important scientific issue. The aim of this study was to research the spatial and temporal distribution of roots system of soybean cultivar ‘Hefeng55’ and mung bean cultivar ‘Jilv7’ which can elucidate differences between soybean roots and mung bean roots in the key spatial and temporal locations. The roots at V6, R2, R4, R5, R6, and R7 stages were collected to acquire data of root length, root surface area, root volume and root dry weight. 49.8%, 11.7%, 13.2%, 14.7% and 10.6% of soybean roots and 57.8%, 10.7%, 11.2%, 11.9% and 8.4% of mung bean roots were in 0-5, 5-10, 10-15, 15-20 and 20-25 cm horizontal soil layers, respectively; 79.2%, 11.5%, 4.3%, 1.8%, 1.1%, 1.0% and 1.1% of soybean roots and 70.0%, 12.3%, 8.0%, 3.0%, 1.6%, 1.7% and 3.4% of mung bean roots were in 0-20, 20-40, 40-60, 60-80, 80-100, 100-120 and 120-140 cm vertical soil layers, respectively. Compared with mung bean, soybean had a much larger root system during development. In horizontal direction, soybean root tended to be more laterally developed, but the distribution of mung bean root was more uniform in vertical direction. With a greater root surface area to weight ratio (AWR), mung bean had a finer root system than soybean. These findings can help to clarify the four-dimensional spatial and temporal distribution characteristics of legumes and may provide reference for production practice of soybean and mung bean in the future.


Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Takuya Koyama ◽  
Shun Murakami ◽  
Toshihiko Karasawa ◽  
Masato Ejiri ◽  
Katsuhiro Shiono

Abstract Background Detailed datasets containing root system and its architecture in soil are required to improve understanding of resource capture by roots. However, most of the root study methods have paid little attention to make and preserve whole root specimens. This study introduces root system sampling equipment that makes the entire root specimen with minimum impairment and without displacement of the spatial arrangement of the root system in root boxes. The objectives are to assess: whether the equipment can rapidly sample the entire root system; whether root surface area is measurable from a scanned digital image of the root specimen; and whether staining of the entire root specimens would provide multidimensional visual information on the interaction between soil and physiological function of root system architecture (RSA). For validation, we examined the root response of two soybean cultivars to arbuscular mycorrhizal (AM) inoculation and the effect of waterlogging stress on the physiological activity of buckwheat RSA. Results The root boxes allowed soybean and buckwheat plants to grow uniformly across the replications. Both species showed significant differences between cultivars and/or among treatments in shoot and root traits. The equipment enabled to sample the whole-root specimens of soybean and buckwheat, where the tips of the fine roots were alive (diameter < 0.2 mm). Also, the whole root specimens of soybean were made in about 7 min. The root surface area calculated from the scanned soybean specimens showed a significant correlation with that calculated from the roots spread out in water (a common method). Staining of the soybean root specimens enabled us to observe the localized root proliferation induced by AM colonization. Moreover, staining of the buckwheat root specimens made it possible to examine the respiratory activity of each root at different depths. Conclusions The present method realized: fast and accurate production of the whole root specimen and precise calculation of the specimens’ root surface area. Moreover, staining of the root specimens enabled analyzing the interaction between soil and physiological function of RSA. The evaluation of root traits, using our methods, will contribute to developing agronomic management and breeding program for sustainable food production.


Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 773 ◽  
Author(s):  
Wang ◽  
Wei ◽  
Li ◽  
Wang ◽  
Ge ◽  
...  

Root system plays an essential role in water and nutrient acquisition in plants. Understanding the genetic basis of root development will be beneficial for breeding new cultivars with efficient root system to enhance resource use efficiency in maize. Here, the natural variation of 13 root and 3 shoot traits was evaluated in 297 maize inbred lines and genome-wide association mapping was conducted to identify SNPs associated with target traits. All measured traits exhibited 2.02- to 21.36-fold variations. A total of 34 quantitative trait loci (QTLs) were detected for 13 traits, and each individual QTL explained 5.7% to 15.9% of the phenotypic variance. Three pleiotropic QTLs involving five root traits were identified; SNP_2_104416607 was associated with lateral root length (LRL), root surface area (RA), root length between 0 and 0.5mm in diameter (RL005), and total root length (TRL); SNP_2_184016997 was associated with RV and RA, and SNP_4_168917747 was associated with LRL, RA and TRL. The expression levels of candidate genes in root QTLs were evaluated by RNA-seq among three long-root lines and three short-root lines. A total of five genes that showed differential expression between the long- and short-root lines were identified as promising candidate genes for the target traits. These QTLs and the potential candidate genes are important source data to understand root development and genetic improvement of root traits in maize.


Author(s):  
Yingying Liu ◽  
Xiaoli Wei ◽  
Zijing Zhou ◽  
Changchang Shao ◽  
Shicheng Su

Chinese windmill palms (Trachycarpus fortunei) are widely planted in karst bedrock outcrop areas in southwest China because of their high economic and ecological values. The aims of this study were to investigate the foraging ability of Chinese windmill palm seedlings planted in six different types of karst microhabitat and to identify the main environmental factors that influence root foraging ability. We planted three-year-old Chinese windmill palm seedlings in six typical karst microhabitats (i.e., rocky trough, rocky surface, rocky gully, rocky soil surface, rocky pit, and soil surface microhabitats). One year after transplanting, the seedlings were excavated to determine the morphological parameters values of new roots and the nutrient concentrations of new roots and leaves. The root foraging ability of Chinese windmill palm seedlings, defined as new root length and new root surface area, was significantly greater in the rocky trough, rocky soil surface, and soil surface microhabitats than in the rocky gully, rocky surface, and rocky pit microhabitats (p < 0.05). Redundancy analysis revealed that the main positive factor affecting the rooting ability of Chinese windmill palm seedlings was soil thickness. Chinese windmill palm seedlings improved their root absorption efficiency by increasing their root length and root surface area under soil nutrient deficiency conditions. The organic carbon, total nitrogen, and available potassium in soil positively influenced the concentration of N and K in roots. Total potassium in soil negatively influenced the biomass of new annual leaves and concentrations of N, P and K in new annual roots and leaves. Chinese windmill palm seedlings can be grown in the different karst microhabitats, especially in the rocky trough, rocky soil surface, and soil surface microhabitats, and, therefore, it is suitable for use in the regeneration of karst forests.


Sign in / Sign up

Export Citation Format

Share Document