scholarly journals Proteomic Responses to Alkali Stress in Oats and the Alleviatory Effects of Exogenous Spermine Application

2021 ◽  
Vol 12 ◽  
Author(s):  
Jianhui Bai ◽  
Ke Jin ◽  
Wei Qin ◽  
Yuqing Wang ◽  
Qiang Yin

Alkali stress limits plant growth and yield more strongly than salt stress and can lead to the appearance of yellow leaves; however, the reasons remain unclear. In this study, we found that (1) the down-regulation of coproporphyrinogen III oxidase, protoporphyrinogen oxidase, and Pheophorbide a oxygenase in oats under alkali stress contributes to the appearance of yellow leaves (as assessed by proteome and western blot analyses). (2) Some oat proteins that are involved in the antioxidant system, root growth, and jasmonic acid (JA) and indole-3-acetic acid (IAA) synthesis are up-regulated in response to alkalinity and help increase alkali tolerance. (3) We added exogenous spermine to oat plants to improve their alkali tolerance, which resulted in higher chlorophyll contents and plant dry weights than in plants subjected to alkaline stress alone. This was due to up-regulation of chitinase and proteins related to chloroplast structure, root growth, and the antioxidant system. Spermine addition increased sucrose utilization efficiency, and promoted carbohydrate export from leaves to roots to increase energy storage in roots. Spermine addition also increased the IAA and JA contents required for root growth.

2020 ◽  
Author(s):  
Jing Liu ◽  
Fei Shen ◽  
Yao Xiao ◽  
Hongcheng Fang ◽  
Changpeng Qiu ◽  
...  

Abstract Background: Saline, alkaline, and saline-alkaline stress severely affect plant growth and development. The tolerance of plants to these stressors has long been important breeding objectives, especially for woody perennials like apple. The aims of this study were to identify quantitative trait loci (QTLs) and to develop genomics-assisted prediction models for salt, alkali, and salt-alkali tolerance in apple rootstock. Results: A total of 3,258 hybrids derived from the apple rootstock cultivars ‘Baleng Crab’ (Malus robusta Rehd., tolerant) × ‘M9’ (M. pumila Mill., sensitive) were used to identify 17, 13, and two QTLs for injury indices of salt, alkali, and salt–alkali stress via bulked segregant analysis. The genotype effects of single nucleotide polymorphism (SNP) markers designed on candidate genes in each QTL interval were estimated. The genomic predicted value of an individual hybrid was calculated by adding the sum of all marker genotype effects to the mean phenotype value of the population. The prediction accuracy was 0.6569, 0.6695, and 0.5834 for injury indices of salt, alkali, and salt–alkali stress, respectively. SNP182G on MdRGLG3, which changes a leucine to an arginine at the vWFA-domain, conferred tolerance to salt, alkali, and salt-alkali stress. SNP761A on MdKCAB, affecting the Kv_beta domain that cooperated with the linked allelic variation SNP11, contributed to salt, alkali, and salt–alkali tolerance in apple rootstock. Conclusions: The genomics-assisted prediction models can potentially be used in breeding saline, alkaline, and saline-alkaline tolerant apple rootstocks. The QTLs and the functional markers may provide insight for future studies into the genetic variation of plant abiotic stress tolerance.


2020 ◽  
Author(s):  
Jing Liu ◽  
Fei Shen ◽  
Yao Xiao ◽  
Hongcheng Fang ◽  
Changpeng Qiu ◽  
...  

Abstract Background: Saline, alkaline, and saline-alkaline stress severely affect plant growth and development. The tolerance of plants to these stressors has long been important breeding objectives, especially for woody perennials like apple. The aims of this study were to identify quantitative trait loci (QTLs) and to develop genomics-assisted prediction models for salt, alkali, and salt-alkali tolerance in apple rootstock. Results: A total of 3,258 hybrids derived from the apple rootstock cultivars ‘Baleng Crab’ (Malus robusta Rehd., tolerant) × ‘M9’ (M. pumila Mill., sensitive) were used to identify 17, 13, and two QTLs for injury indices of salt, alkali, and salt–alkali stress via bulked segregant analysis. The genotype effects of single nucleotide polymorphism (SNP) markers designed on candidate genes in each QTL interval were estimated. The genomic predicted value of an individual hybrid was calculated by adding the sum of all marker genotype effects to the mean phenotype value of the population. The prediction accuracy was 0.6569, 0.6695, and 0.5834 for injury indices of salt, alkali, and salt–alkali stress, respectively. SNP182G on MdRGLG3, which changes a leucine to an arginine at the vWFA-domain, conferred tolerance to salt, alkali, and salt-alkali stress. SNP761A on MdKCAB, affecting the Kv_beta domain that cooperated with the linked allelic variation SNP11, contributed to salt, alkali, and salt–alkali tolerance in apple rootstock. Conclusions: The genomics-assisted prediction models can potentially be used in breeding saline, alkaline, and saline-alkaline tolerant apple rootstocks. The QTLs and the functional markers may provide insight for future studies into the genetic variation of plant abiotic stress tolerance.


2020 ◽  
Author(s):  
Jing Liu ◽  
Fei Shen ◽  
Yao Xiao ◽  
Hongcheng Fang ◽  
Changpeng Qiu ◽  
...  

Abstract Background: Saline, alkaline, and saline-alkaline stress severely affect plant growth and development. The tolerance of plants to these stressors has long been important breeding objectives, especially for woody perennials like apple. The aims of this study were to identify quantitative trait loci (QTLs) and to develop genomics-assisted prediction models for salt, alkali, and salt-alkali tolerance in apple rootstock. Results: A total of 3,258 hybrids derived from the apple rootstock cultivars ‘Baleng Crab’ ( Malus robusta Rehd., tolerant) × ‘M9’ ( M. pumila Mill., sensitive) were used to identify 17, 13, and two QTLs for injury indices of salt, alkali, and salt–alkali stress via bulked segregant analysis. The genotype effects of single nucleotide polymorphism (SNP) markers designed on candidate genes in each QTL interval were estimated. The genomic predicted value of an individual hybrid was calculated by adding the sum of all marker genotype effects to the mean phenotype value of the population. The prediction accuracy was 0.6569, 0.6695, and 0.5834 for injury indices of salt, alkali, and salt–alkali stress, respectively. SNP182G on MdRGLG3 , which changes a leucine to an arginine at the vWFA-domain, conferred tolerance to salt, alkali, and salt-alkali stress. SNP761A on MdKCAB , affecting the Kv_beta domain that cooperated with the linked allelic variation SNP11, contributed to salt, alkali, and salt–alkali tolerance in apple rootstock. Conclusions: The genomics-assisted prediction models can potentially be used in breeding saline, alkaline, and saline-alkaline tolerant apple rootstocks. The QTLs and the functional markers may provide insight for future studies into the genetic variation of plant abiotic stress tolerance.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qian Ma ◽  
Caoyang Wu ◽  
Shihan Liang ◽  
Yuhao Yuan ◽  
Chunjuan Liu ◽  
...  

Broomcorn millet (BM), one of the earliest domesticated cereal crops originating in northern China, can tolerate extreme conditions, such as drought and high temperatures, which are prevalent in saline-alkali, arid, and barren landscapes. However, its adaptive mechanism to alkali stress is yet to be comprehensively understood. In this study, 80 and 40 mM standard alkali stress concentrations were used to, respectively, evaluate the alkali tolerance at the germination and seedling stages of 296 BM genotypes. Principal component analysis (PCA), Pearson's correlation analysis, and F-value comprehensive analysis were performed on the germination parameters (germination potential, germination index, germination rate, vigor index, root length/weight, sprout length/weight, and alkali damage rate). Based on their respective F-values, the BM genotypes were divided into five categories ranging from highly alkali resistant to alkali sensitive. To study the response of seedlings to alkaline stress, we investigated the phenotypic parameters (plant height, green leaf area, biomass, and root structure) of 111 genotypes from the above five categories. Combining the parameters of alkali tolerance at the germination and seedling stages, these 111 genotypes were further subdivided into three groups with different alkali tolerances. Variations in physiological responses of the different alkali-tolerant genotypes were further investigated for antioxidant enzyme activity, soluble substances, malondialdehyde (MDA) content, electrolyte leakage rate, and leaf structure. Compared with alkali-sensitive genotypes, alkali-tolerant genotypes had high antioxidant enzyme activity and soluble osmolyte content, low MDA content and electrolyte leakage rate, and a more complete stomata structure. Taken together, this study provides a comprehensive and reliable method for evaluating alkali tolerance and will contribute to the improvement and restoration of saline-alkaline soils by BM.


2020 ◽  
Author(s):  
Jing Liu ◽  
Fei Shen ◽  
Yao Xiao ◽  
Hongcheng Fang ◽  
Changpeng Qiu ◽  
...  

Abstract Background: Saline, alkaline, and saline-alkaline stress severely affect plant growth and development. The tolerance of plants to these stressors has long been important breeding objectives, especially for woody perennials like apple. The aims of this study were to identify quantitative trait loci (QTLs) and to develop genomics-assisted prediction models for salt, alkali, and salt-alkali tolerance in apple rootstock. Results: A total of 3,258 hybrids derived from the apple rootstock cultivars ‘Baleng Crab’ (Malus robusta Rehd., tolerant) × ‘M9’ (M. pumila Mill., sensitive) were used to identify 17, 13, and two QTLs for injury indices of salt, alkali, and salt–alkali stress via bulked segregant analysis. The genotype effects of single nucleotide polymorphism (SNP) markers designed on candidate genes in each QTL interval were estimated. The genomic predicted value of an individual hybrid was calculated by adding the sum of all marker genotype effects to the mean phenotype value of the population. The prediction accuracy was 0.6569, 0.6695, and 0.5834 for injury indices of salt, alkali, and salt–alkali stress, respectively. SNP182G on MdRGLG3, which changes a leucine to an arginine at the vWFA-domain, conferred tolerance to salt, alkali, and salt-alkali stress. SNP761A on MdKCAB, affecting the Kv_beta domain that cooperated with the linked allelic variation SNP11, contributed to salt, alkali, and salt–alkali tolerance in apple rootstock. Conclusions: The genomics-assisted prediction models can potentially be used in breeding saline, alkaline, and saline-alkaline tolerant apple rootstocks. The QTLs and the functional markers may provide insight for future studies into the genetic variation of plant abiotic stress tolerance.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhijian Chen ◽  
Jianling Song ◽  
Xinyong Li ◽  
Jacobo Arango ◽  
Juan Andres Cardoso ◽  
...  

Abstract Background Phosphorus (P) is an essential macronutrient for plant growth that participates in a series of biological processes. Thus, P deficiency limits crop growth and yield. Although Stylosanthes guianensis (stylo) is an important tropical legume that displays adaptation to low phosphate (Pi) availability, its adaptive mechanisms remain largely unknown. Results In this study, differences in low-P stress tolerance were investigated using two stylo cultivars (‘RY2’ and ‘RY5’) that were grown in hydroponics. Results showed that cultivar RY2 was better adapted to Pi starvation than RY5, as reflected by lower values of relative decrease rates of growth parameters than RY5 at low-P stress, especially for the reduction of shoot and root dry weight. Furthermore, RY2 exhibited higher P acquisition efficiency than RY5 under the same P treatment, although P utilization efficiency was similar between the two cultivars. In addition, better root growth performance and higher leaf and root APase activities were observed with RY2 compared to RY5. Subsequent RNA-seq analysis revealed 8,348 genes that were differentially expressed under P deficient and sufficient conditions in RY2 roots, with many Pi starvation regulated genes associated with P metabolic process, protein modification process, transport and other metabolic processes. A group of differentially expressed genes (DEGs) involved in Pi uptake and Pi homeostasis were identified, such as genes encoding Pi transporter (PT), purple acid phosphatase (PAP), and multidrug and toxin extrusion (MATE). Furthermore, a variety of genes related to transcription factors and regulators involved in Pi signaling, including genes belonging to the PHOSPHATE STARVATION RESPONSE 1-like (PHR1), WRKY and the SYG1/PHO81/XPR1 (SPX) domain, were also regulated by P deficiency in stylo roots. Conclusions This study reveals the possible mechanisms underlying the adaptation of stylo to P deficiency. The low-P tolerance in stylo is probably manifested through regulation of root growth, Pi acquisition and cellular Pi homeostasis as well as Pi signaling pathway. The identified genes involved in low-P tolerance can be potentially used to design the breeding strategy for developing P-efficient stylo cultivars to grow on acid soils in the tropics.


2020 ◽  
Author(s):  
Jing Liu ◽  
Fei Shen ◽  
Yao Xiao ◽  
Hongcheng Fang ◽  
Changpeng Qiu ◽  
...  

Abstract Background: Saline, alkaline, and saline-alkaline stress severely affect plant growth and development. The tolerance of plants to these stressors has long been important breeding objectives, especially for woody perennials like apple. The aims of this study were to identify quantitative trait loci (QTLs) and to develop genomics-assisted prediction models for salt, alkali, and salt-alkali tolerance in apple rootstock. Results: A total of 3,258 hybrids derived from the apple rootstock cultivars ‘Baleng Crab’ ( Malus robusta Rehd., tolerant) × ‘M9’ ( M. pumila Mill., sensitive) were used to identify 17, 13, and two QTLs for injury indices of salt, alkali, and salt–alkali stress via bulked segregant analysis. The genotype effects of single nucleotide polymorphism (SNP) markers designed on candidate genes in each QTL interval were estimated. The genomic predicted value of an individual hybrid was calculated by adding the sum of all marker genotype effects to the mean phenotype value of the population. The prediction accuracy was 0.6569, 0.6695, and 0.5834 for injury indices of salt, alkali, and salt–alkali stress, respectively. SNP182G on MdRGLG3 , which changes a leucine to an arginine at the vWFA-domain, conferred tolerance to salt, alkali, and salt-alkali stress. SNP761A on MdKCAB , affecting the Kv_beta domain that cooperated with the linked allelic variation SNP11, contributed to salt, alkali, and salt–alkali tolerance in apple rootstock. Conclusions: The genomics-assisted prediction models can potentially be used in breeding saline, alkaline, and saline-alkaline tolerant apple rootstocks. The QTLs and the functional markers may provide insight for future studies into the genetic variation of plant abiotic stress tolerance.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 611
Author(s):  
Abdessamad Fakhech ◽  
Martin Jemo ◽  
Najat Manaut ◽  
Lahcen Ouahmane ◽  
Mohamed Hafidi

The impact of salt stress on the growth and phosphorus utilization efficiency (PUE) of two leguminous species: Retama monosperma and Acacia gummifera was studied. The effectiveness of arbuscular mycorrhizal fungi (AMF) to mitigate salt stress was furthermore assessed. Growth, N and P tissue concentrations, mycorrhizal root colonization frequency and intensity, and P utilization efficiency (PUE) in the absence or presence of AMF were evaluated under no salt (0 mM L−1) and three salt (NaCl) concentrations of (25, 50 and 100 mM L−1) using a natural sterilized soil. A significant difference in mycorrhizal colonization intensity, root-to-shoot ratio, P uptake, PUE, and N uptake was observed between the legume species. Salt stress inhibited the shoot and root growth, and reduced P and N uptake by the legume species. Mycorrhizal inoculation aided to mitigate the effects of salt stress with an average increase of shoot and root growth responses by 35% and 32% in the inoculated than in the non-inoculated A. gummifera treatments. The average shoot and root growth responses were 37% and 45% higher in the inoculated compared to the non-inoculated treatments of R. monosperma. Average mycorrhizal shoot and root P uptake responses were 66% and 68% under A. gummifera, and 40% and 95% under R. monosperma, respectively. Mycorrhizal inoculated treatments consistently maintained lower PUE in the roots. The results provide insights for further investigations on the AMF conferred mechanisms to salt stress tolerance response by A. gummifera and R. monosperma, to enable the development of effective technologies for sustainable afforestation and reforestation programs in the Atlantic coast of Morocco.


2015 ◽  
Vol 43 (2) ◽  
pp. 473-478 ◽  
Author(s):  
Shuai SHAO ◽  
Mingming QI ◽  
Shuang TAO ◽  
Jixiang LIN ◽  
Yingnan WANG ◽  
...  

Soil salinization and alkalization frequently co-occur in the grassland, but little information exists concerning the mixed effects of salt-alkaline stress on plant. Jerusalem artichoke is an economically and ecologically important energy crop and also considered as a salt-tolerant species. In this study, we investigated the effects of 12 mixed salt-alkaline conditions on the seedling growth and responses of Jerusalem artichoke to such conditions. The results showed that the seedling growth decreased with the increasing salinity and pH, and the destructive effects were more markedly under the interactions of highest salinity and pH. The Na+, Mg2+ and Ca2+ concentrations were all increased with the increasing salinity and pH, but the K+ kept stable. The Cl- concentration increased when the treatment without alkali salts, and the NO3– and H2PO4- concentrations were decreased with the increasing salinity. Jerusalem artichoke seedlings enhanced organic acids and proline to supply the shortage of inorganic anions and cope with osmotic stress from the high Na+ concentration. Above results show that the toxicity effects of the interactions of salt stress and alkali stress on plant is much greater than that only salt or alkali stress. A better understanding of the seedlings of Jerusalem artichoke under mixed salt-alkali stress conditions should facilitate the effective utilization of this species under such complex environment in Northeast China.


Sign in / Sign up

Export Citation Format

Share Document