scholarly journals The Alkali Tolerance of Broomcorn Millet (Panicum miliaceum L.) at the Germination and Seedling Stage: The Case of 296 Broomcorn Millet Genotypes

2021 ◽  
Vol 12 ◽  
Author(s):  
Qian Ma ◽  
Caoyang Wu ◽  
Shihan Liang ◽  
Yuhao Yuan ◽  
Chunjuan Liu ◽  
...  

Broomcorn millet (BM), one of the earliest domesticated cereal crops originating in northern China, can tolerate extreme conditions, such as drought and high temperatures, which are prevalent in saline-alkali, arid, and barren landscapes. However, its adaptive mechanism to alkali stress is yet to be comprehensively understood. In this study, 80 and 40 mM standard alkali stress concentrations were used to, respectively, evaluate the alkali tolerance at the germination and seedling stages of 296 BM genotypes. Principal component analysis (PCA), Pearson's correlation analysis, and F-value comprehensive analysis were performed on the germination parameters (germination potential, germination index, germination rate, vigor index, root length/weight, sprout length/weight, and alkali damage rate). Based on their respective F-values, the BM genotypes were divided into five categories ranging from highly alkali resistant to alkali sensitive. To study the response of seedlings to alkaline stress, we investigated the phenotypic parameters (plant height, green leaf area, biomass, and root structure) of 111 genotypes from the above five categories. Combining the parameters of alkali tolerance at the germination and seedling stages, these 111 genotypes were further subdivided into three groups with different alkali tolerances. Variations in physiological responses of the different alkali-tolerant genotypes were further investigated for antioxidant enzyme activity, soluble substances, malondialdehyde (MDA) content, electrolyte leakage rate, and leaf structure. Compared with alkali-sensitive genotypes, alkali-tolerant genotypes had high antioxidant enzyme activity and soluble osmolyte content, low MDA content and electrolyte leakage rate, and a more complete stomata structure. Taken together, this study provides a comprehensive and reliable method for evaluating alkali tolerance and will contribute to the improvement and restoration of saline-alkaline soils by BM.

2021 ◽  
Vol 11 ◽  
Author(s):  
Zhongyuan Liu ◽  
Qingjun Xie ◽  
Feifei Tang ◽  
Jing Wu ◽  
Wenfang Dong ◽  
...  

The salt overly sensitive (SOS) signal transduction pathway is one of the most highly studied salt tolerance pathways in plants. However, the molecular mechanism of the salt stress response in Tamarix hispida has remained largely unclear. In this study, five SOS genes (ThSOS1–ThSOS5) from T. hispida were cloned and characterized. The expression levels of most ThSOS genes significantly changed after NaCl, PEG6000, and abscisic acid (ABA) treatment in at least one organ. Notably, the expression of ThSOS3 was significantly downregulated after 6 h under salt stress. To further analyze ThSOS3 function, ThSOS3 overexpression and RNAi-mediated silencing were performed using a transient transformation system. Compared with controls, ThSOS3-overexpressing transgenic T. hispida plants exhibited greater reactive oxygen species (ROS)-scavenging capability and antioxidant enzyme activity, lower malondialdehyde (MDA) and H2O2 levels, and lower electrolyte leakage rates under salt stress. Similar results were obtained for physiological parameters in transgenic Arabidopsis, including H2O2 and MDA accumulation, superoxide dismutase (SOD) and peroxidase (POD) activity, and electrolyte leakage. In addition, transgenic Arabidopsis plants overexpressing ThSOS3 displayed increased root growth and fresh weight gain under salt stress. Together, these data suggest that overexpression of ThSOS3 confers salt stress tolerance on plants by enhancing antioxidant enzyme activity, improving ROS-scavenging capability, and decreasing the MDA content and lipid peroxidation of cell membranes. These results suggest that ThSOS3 might play an important physiological role in salt tolerance in transgenic T. hispida plants. This study provides a foundation for further elucidation of salt tolerance mechanisms involving ThSOSs in T. hispida.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1779
Author(s):  
Liang Zhang ◽  
Bingbing Gao

Cadmium (Cd) contamination of agricultural soil has become a serious threat to global food security. The present study highlights the effect of added isosteviol in modulating growth physiology and antioxidant defense systems conferring tolerance against cadmium (Cd) stress in wheat. Wheat growth, chlorophyll content, malondialdehyde (MDA) content of leaves, dehydrogenase activity of root, and antioxidant enzyme activity were determined to get an overview of cellular response in conquering Cd-induced oxidative stress damages. The results indicated that wheat germination was inhibited under Cd2+ concentration at 10 µM. The presence of isosteviol and gibberellic acid (GA) significantly alleviated the inhibitory effect on the growth of wheat seedling under 10 µM Cd2+ stress. Moreover, different concentrations of isosteviol and GA regulated the physiological changes of wheat under Cd stress: more chlorophyll a + b content; less MDA content; and higher dehydrogenase activity of root and antioxidant enzyme activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), as compared to Cd alone in wheat seedling. The present study thus suggests a possible role of isosteviol in amelioration of Cd stress by increasing chlorophyll content and root dehydrogenase activity, which also could reduce oxidative damage of the cell membrane by regulating the activities of antioxidant enzymes in wheat seedling.


2012 ◽  
Vol 209-211 ◽  
pp. 1131-1135 ◽  
Author(s):  
De Yong Zhang ◽  
Xiao Lu Xu ◽  
Yin Lu ◽  
Hui Ying Xu ◽  
Hui Min Yan

To evaluate the toxic effects of environmental contaminant PFOS on green algae, Scenedesmus obliqnus was cultured in media containing serially diluted PFOS for evaluation of proliferation capacity and some physiological indexes. Within 96h, PFOS doses ≥50 mg/L all inhibited the proliferation speed of Scenedesmus obliqnus(p<0.05). The 96h EC50 value of PFOS was determined to be 126 mg/L. In a chronic experiment with 8 days of PFOS treatment, chlorophyll a content, which was inhibited by even the lowest dose, showed to be the most sensitive index to PFOS contamination. PFOS doses ≥100mg/L all resulted in decreasing of antioxidant enzyme activity and increasing of MDA content in Scenedesmus obliqnus(P<0.05).


2003 ◽  
Vol 14 (03) ◽  
pp. 134-143 ◽  
Author(s):  
James J. Klemens ◽  
Robert P. Meech ◽  
Larry F. Hughes ◽  
Satu Somani ◽  
Kathleen C.M. Campbell

This study's purpose was to determine if a correlation exists between cochlear antioxidant activity changes and auditory function after induction of aminoglycoside (AG) ototoxicity. Two groups of five 250-350 g albino guinea pigs served as subjects. For 28 days, albino guinea pigs were administered either 200 mg/kg/day amikacin, or saline subcutaneously. Auditory brainstem response testing was performed prior to the first injection and again before sacrifice, 28 days later. Cochleae were harvested and superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, glutathione reductase activities and malondialdehyde levels were measured. All antioxidant enzymes had significantly lower activity in the amikacin group (p ≤ 0.05) than in the control group. The difference in cochlear antioxidant enzyme activity between groups inversely correlated significantly with the change in ABR thresholds. The greatest correlation was for the high frequencies, which are most affected by aminoglycosides. This study demonstrates that antioxidant enzyme activity and amikacin-induced hearing loss significantly covary.


Sign in / Sign up

Export Citation Format

Share Document