scholarly journals Splitting the Difference: Heterogeneous Soil Moisture Availability Affects Aboveground and Belowground Reserve and Mass Allocation in Trembling Aspen

2021 ◽  
Vol 12 ◽  
Author(s):  
Ashley T. Hart ◽  
Morgane Merlin ◽  
Erin Wiley ◽  
Simon M. Landhäusser

When exploring the impact of resource availability on perennial plants, artificial treatments often apply conditions homogeneously across space and time, even though this rarely reflects conditions in natural systems. To investigate the effects of spatially heterogeneous soil moisture on morphological and physiological responses, trembling aspen (Populus tremuloides) saplings were used in a split-pot experiment. Following the division of the root systems, saplings were established for a full year and then subjected to either heterogeneous (portion of the root system exposed to non-lethal drought) or homogeneous (whole root system exposed to non-lethal drought or well-watered) treatments. Above- and belowground growth and non-structural carbohydrate (NSC) reserves (soluble sugars and starch) were measured to determine how allocation of reserves and mass between and within organs changed in response to variation in soil moisture availability. In contrast to saplings in the homogeneous drought treatment, which experienced reduced shoot growth, leaf abscission and fine root loss, saplings exposed to the heterogeneous conditions maintained similar aboveground growth and increased root system allocation compared to well-watered saplings. Interestingly under heterogeneous soil moisture conditions, the portion of the root system that was resource limited had no root dieback and increased carbon reserve concentrations, while the portion of the root system that was not resource limited added new roots (30% increase). Overall, saplings subjected to the heterogeneous soil moisture regime over-compensated belowground, both in mass and NSC reserves. These results indicate that the differential allocation of mass or reserves between above- and belowground organs, but also within the root system can occur. While the mechanisms and processes involved in these patterns are not clear, these responses could be interpreted as adaptations and acclimations to preserve the integrity of the entire sapling and suggests that different portions of plant organs might respond autonomously to local conditions. This study provides further appreciation of the complexity of the mechanisms by which plants manage heterogeneous conditions and offers evidence that spatial and temporal variability of resource availability, particularly belowground, needs to be accounted for when extrapolating and modeling stress responses at larger temporal and spatial scales.

Ecohydrology ◽  
2012 ◽  
Vol 6 (2) ◽  
pp. 214-227 ◽  
Author(s):  
Mingbin Huang ◽  
Julie D. Zettl ◽  
S. Lee Barbour ◽  
Amin Elshorbagy ◽  
Bing Cheng Si

2021 ◽  
Author(s):  
Martin Bouda ◽  
Jan Vanderborght ◽  
Mathieu Javaux

<p>Recent advances in scaling up water flows on root system networks hold promise for improving predictions of water uptake at large scales. These developments are particularly timely, as persistent difficulties in getting Earth system models to accurately represent soil-root water flows, especially under drying or heterogeneous soil moisture conditions, are now a major obstacle describing the water limitation of terrestrial fluxes.</p><p>One recently developed upscaling formalism has been shown to be both free of discretisation error in flow predictions regardless of scale and with computational cost linearly diminishing with the number of soil subdomains considered. What has been missing from this approach, however, is a proven method to apply it generally – i.e. to an arbitrary root system architecture discretised on an arbitrary grid.</p><p>The work presented here demonstrates a general algorithm that can be applied to a wide range of root system architectures (the only assumption being that only one lateral root originates at one point along a parent root) discretised on a grid consisting of a series of soil layers of variable thickness, as is common in Earth system models. It is further shown theoretically that both of these restrictions can in principle be relaxed and that this approach can in principle be extended to conditions of soil moisture heterogeneity – i.e. situations where each root segment in a soil grid cell faces a different water potential at the soil-root interface.</p><p>This work represents both a practical advance bringing broad applicability to this upscaling approach and a major theoretical advance as exact solutions for water uptake under conditions of soil moisture heterogeneity within grid cells were previously unknown. While obtaining exact solutions despite heterogeneity within the grid cell requires a way of finding the overall mean soil water potential faced by the plant, this advance nevertheless points to possible directions of future research for overcoming the major hurdle of soil moisture heterogeneity.</p>


1994 ◽  
Vol 24 (7) ◽  
pp. 1440-1449 ◽  
Author(s):  
M.A. Perry ◽  
R.J. Mitchell ◽  
B.R. Zutter ◽  
G.R. Glover ◽  
D.H. Gjerstad

Plant mixtures were established that differed in both proportion and density of loblolly pine (Pinustaeda L.), sweetgum (Liquidambarstyraciflua L.), and broomsedge (Andropogonvirginicus L.). Soil moisture availability to the pine seedlings was quantified every 2 weeks by measuring predawn xylem pressure potentials. Temporal variation in pine water potential was accounted for by a water stress integral approach. Cumulative water stress integral values were calculated over four overlapping periods, from May to June, May to July, May to August, and May to September and compared with the mean seedling stem volume index at each period to determine competitive responses at the whole plant scale. Diurnal measures of stomatal conductance were taken each month to compare competitive responses at the leaf scale. In addition, environmental and plant responses that may control stomatal behavior were quantified. The pine water stress integral was strongly influenced by competing vegetation after the onset of a period of drought in early summer. The correlation between the water stress integral and pine growth increased after a significant drying period, accounting for more than half of the variation in stem volume index at the end of the first growing season. Stomatal conductance was also influenced by competition, with competitive effects more evident during times of drought. Conductance was most often related to bulk leaf water potential, which in turn was related to competitive effects on soil moisture availability. Vapor pressure deficit also influenced stomatal conductance, but this was largely unrelated to competitive effects.


1994 ◽  
Vol 24 (7) ◽  
pp. 1495-1502 ◽  
Author(s):  
Paul D. Anderson ◽  
John A. Helms

The tissue water relations of Pinusponderosa Dougl. ex Laws, (ponderosa pine) and Arctostaphylospatula Greene (greenleaf manzanita) seedlings subjected to three levels of soil moisture availability were monitored over a 6-month period. Throughout the study, osmotic potentials at full turgor and at the turgor loss point were approximately 0.5 MPa greater for pine than for manzanita. Osmotic adjustment occurred for both species as evidenced by declines in osmotic potentials at full turgor and at the turgor loss point of 0.5–0.6 MPa over the study period. Pine maintained higher bulk tissue elasticity and lower water content at the turgor loss point relative to manzanita. Moisture regime had little effect on the measured parameters except for apoplasmic water content which increased at moderate and high stress levels for both species. Results suggest that osmotic adjustment occurred, at least partially, as a result of factors other than moisture availability. The lower tissue elasticity and higher water content at the turgor loss point for manzanita suggest that the shrub species is more dependent upon high foliar water content for the maintenance of turgor compared with the conifer.


Sign in / Sign up

Export Citation Format

Share Document