soil moisture heterogeneity
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 8)

H-INDEX

6
(FIVE YEARS 1)

Author(s):  
Yu Cheng ◽  
Pak Wah Chan ◽  
Xin Wei ◽  
Zeyuan Hu ◽  
Zhiming Kuang ◽  
...  

AbstractSoil moisture heterogeneity can induce mesoscale circulations due to differential heating between dry and wet surfaces, which can, in turn, trigger precipitation. In this work, we conduct cloud-permitting simulations over a 100 km × 25 km idealized land surface, with the domain split equally between a wet and dry region, each with homogeneous soil moisture. In contrast to previous studies that prescribed initial atmospheric profiles, each simulation is run with fixed soil moisture for 100 days to allow the atmosphere to equilibrate to the given land surface rather than prescribing the initial atmospheric profile. It is then run for one additional day, allowing the soil moisture to freely vary. Soil moisture controls the resulting precipitation over the dry region through three different mechanisms: as the dry domain gets drier, (1) the mesoscale circulation strengthens, increasing water vapor convergence over the dry domain, (2) surface evaporation declines over the dry domain, decreasing water vapor convergence over the dry domain and (3) precipitation efficiency declines due to increased re-evaporation, meaning proportionally less water vapor over the dry domain becomes surface precipitation. We find that the third mechanism dominates when soil moisture is small in the dry domain: drier soils ultimately lead to less precipitation in the dry domain due to its impact on precipitation efficiency. This work highlights an important new mechanism by which soil moisture controls precipitation, through its impact on precipitation re-evaporation and efficiency.


2021 ◽  
Author(s):  
Martin Bouda ◽  
Jan Vanderborght ◽  
Mathieu Javaux

<p>Recent advances in scaling up water flows on root system networks hold promise for improving predictions of water uptake at large scales. These developments are particularly timely, as persistent difficulties in getting Earth system models to accurately represent soil-root water flows, especially under drying or heterogeneous soil moisture conditions, are now a major obstacle describing the water limitation of terrestrial fluxes.</p><p>One recently developed upscaling formalism has been shown to be both free of discretisation error in flow predictions regardless of scale and with computational cost linearly diminishing with the number of soil subdomains considered. What has been missing from this approach, however, is a proven method to apply it generally – i.e. to an arbitrary root system architecture discretised on an arbitrary grid.</p><p>The work presented here demonstrates a general algorithm that can be applied to a wide range of root system architectures (the only assumption being that only one lateral root originates at one point along a parent root) discretised on a grid consisting of a series of soil layers of variable thickness, as is common in Earth system models. It is further shown theoretically that both of these restrictions can in principle be relaxed and that this approach can in principle be extended to conditions of soil moisture heterogeneity – i.e. situations where each root segment in a soil grid cell faces a different water potential at the soil-root interface.</p><p>This work represents both a practical advance bringing broad applicability to this upscaling approach and a major theoretical advance as exact solutions for water uptake under conditions of soil moisture heterogeneity within grid cells were previously unknown. While obtaining exact solutions despite heterogeneity within the grid cell requires a way of finding the overall mean soil water potential faced by the plant, this advance nevertheless points to possible directions of future research for overcoming the major hurdle of soil moisture heterogeneity.</p>


2021 ◽  
Author(s):  
Junhan Zeng ◽  
Xing Yuan ◽  
Peng Ji

<p>Due to the land surface complexity, soil moisture immensely varies both spatially and temporally. However, the combined effects of land surface complexity and key hydrological processes (e.g., subsurface lateral flow) on fine-scale soil moisture heterogeneity remain elusive due to the scarcity of observations. Benefit from improvements in hyper-resolution land surface modeling, it provides an unprecedented opportunity to investigate the fine-scale soil moisture heterogeneity over a large region. Here, we use the Conjunctive Surface-Subsurface Process model version 2 (CSSPv2), which considers subsurface lateral flow, to perform hyperresolution (100-m) simulations over ten selected regions with different climate. We find that the heterogeneities of vegetation, soil texture, precipitation or their combinations increase soil moisture heterogeneity significantly (p<0.01). If only the topography heterogeneity presents, subsurface lateral flow increases the soil moisture heterogeneity significantly (p<0.01). However, the effect of subsurface lateral flow has been reduced by combining topography heterogeneity with other surface heterogeneities, with a few regions showing decreased soil moisture heterogeneity mainly because of the combined effect of subsurface lateral flow and soil texture heterogeneity. This study suggests that soil texture heterogeneity does not necessarily interact synergistically with physical processes (e.g., subsurface lateral flow) for increasing soil moisture heterogeneity, although they can increase the heterogeneity separately.</p>


Author(s):  
E. J. BARTON ◽  
C. M. TAYLOR ◽  
C. KLEIN ◽  
P. P. HARRIS ◽  
X. MENG

AbstractConvection over the Tibetan Plateau (TP) has been linked to heavy rain and flooding in downstream parts of China. Understanding processes which influence the development of convection on the TP could contribute to better forecasting of these extreme events. TP scale (~1000 km) soil moisture gradients have been shown to influence formation of convective systems over the eastern TP. The importance of smaller scale (~10 km) variability has been identified in other regions (including the Sahel and Mongolia) but has yet to be investigated for the TP. In addition, compared to studies over flat terrain, much less is known about soil moisture-convection feedbacks above complex topography. In this study we use satellite observations of cold cloud, land surface temperature and soil moisture to analyze the effect of mesoscale soil moisture heterogeneity on the initiation of strong convection in the complex TP environment. We find that strong convection is favored over negative (positive) land surface temperature (soil moisture) gradients. The signal is strongest for less vegetation and low topographic complexity, though still significant up to a local standard deviation of 300 m in elevation, accounting for 65% of cases. In addition, the signal is dependent on background wind. Strong convective initiation is only sensitive to local (10s of km) soil moisture heterogeneity for light wind speeds, though large scale (100s of km) gradients may still be important for strong wind speeds. Our results demonstrate that, even in the presence of complex topography, local soil moisture variability plays an important role in storm development.


2020 ◽  
Author(s):  
Martin Bouda ◽  
Jan Vanderborght ◽  
Valentin Couvreur ◽  
Félicien Meunier ◽  
Mathieu Javaux

<p>Estimating plant uptake of soil water has been a persistent problem in process-based earth system models (ESMs). Initially ignored altogether, plant access to soil water was long modelled with heuristic approaches at large scales. These formulations are currently being replaced as ESMs begin to incorporate more detailed plant hydraulics schemes based on the soil-plant-atmosphere continuum concept. While the new schemes greatly improve mechanistic description of above-ground plant hydraulics, they have given rise to various issues belowground, from excessive hydraulic redistribution to numerical instability. As detailed 3D descriptions of root systems and water flow equations on the soil-root domain have been established, the key challenge is how to scale them up to relevant scales, reducing computational cost to a trivial level without loss of accuracy.</p><p>Here, we set out a mathematical framework that incorporates recent advances in this area and allows us to relate them to each other. Comparing and contrasting different models, formulated in a novel matrix form of the water flow problem in the root system, allows us to make inferences about their suitability for use in upscaling. We are able to show how to avoid discretization error in the upscaled root scheme, as well as which upscaling method offers full generality, and which yields the computationally simplest forms. These theoretical results are fully supported by numerical simulations of fully explicit 3D root systems and their upscaled versions. Improved performance of the upscaled models is also demonstrated in an application to field data from the Wind River Crane flux tower site (reduced model bias, root mean squared error, and increased robustness of fitted parameters).</p><p>Root water uptake equations can now be scaled up without discretization error for arbitrary root systems. The chief remaining source of error is soil moisture heterogeneity within discretized soil elements where it is assumed uniform by any given model (e.g. within each vertical layer). The main task for future work thus becomes to achieve a correspondingly accurate description for soil moisture heterogeneity. Some of the upscaling approaches compared here offer hints at potential next steps in this direction.</p>


2020 ◽  
Vol 40 (6) ◽  
pp. 762-773 ◽  
Author(s):  
Jaime Puértolas ◽  
Marta Pardos ◽  
Carlos de Ollas ◽  
Alfonso Albacete ◽  
Ian C Dodd

Abstract Soil moisture heterogeneity in the root zone is common both during the establishment of tree seedlings and in experiments aiming to impose semi-constant soil moisture deficits, but its effects on regulating plant water use compared with homogenous soil drying are not well known in trees. Pronounced vertical soil moisture heterogeneity was imposed on black poplar (Populus nigra L.) grown in soil columns by altering irrigation frequency, to test whether plant water use, hydraulic responses, root phytohormone concentrations and root xylem sap chemical composition differed between wet (well-watered, WW), and homogeneously (infrequent deficit irrigation, IDI) and heterogeneously dry soil (frequent deficit irrigation, FDI). At the same bulk soil water content, FDI plants had greater water use than IDI plants, probably because root abscisic acid (ABA) concentration was low in the upper wetter layer of FDI plants, which maintained root xylem sap ABA concentration at basal levels in contrast with IDI. Soil drying did not increase root xylem concentration of any other hormone. Nevertheless, plant-to-plant variation in xylem jasmonic acid (JA) concentration was negatively related to leaf stomatal conductance within WW and FDI plants. However, feeding detached leaves with high (1200 nM) JA concentrations via the transpiration stream decreased transpiration only marginally. Xylem pH and sulphate concentration decreased in FDI plants compared with well-watered plants. Frequent deficit irrigation increased root accumulation of the cytokinin trans-zeatin (tZ), especially in the dry lower layer, and of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), in the wet upper soil layer. Root hormone accumulation might explain the maintenance of high root hydraulic conductance and water use in FDI plants (similar to well-watered plants) compared with IDI plants. In irrigated tree crops, growers could vary irrigation scheduling to control water use by altering the hormone balance.


2018 ◽  
Vol 10 (6) ◽  
pp. 969 ◽  
Author(s):  
Irina Petrova ◽  
Diego Miralles ◽  
Chiel van Heerwaarden ◽  
Hendrik Wouters

2015 ◽  
Vol 113 ◽  
pp. 40-50 ◽  
Author(s):  
Songyang Li ◽  
Jixun Gao ◽  
Qingsheng Zhu ◽  
Lingqiu Zeng ◽  
Ji Liu

Sign in / Sign up

Export Citation Format

Share Document