scholarly journals Clathrin Is Important for Virulence Factors Delivery in the Necrotrophic Fungus Botrytis cinerea

2021 ◽  
Vol 12 ◽  
Author(s):  
Eytham Souibgui ◽  
Christophe Bruel ◽  
Mathias Choquer ◽  
Amélie de Vallée ◽  
Cindy Dieryckx ◽  
...  

Fungi are the most prevalent plant pathogens, causing annually important damages. To infect and colonize their hosts, they secrete effectors including hydrolytic enzymes able to kill and macerate plant tissues. These secreted proteins are transported from the Endoplasmic Reticulum and the Golgi apparatus to the extracellular space through intracellular vesicles. In pathogenic fungi, intracellular vesicles were described but their biogenesis and their role in virulence remain unclear. In this study, we report the essential role of clathrin heavy chain (CHC) in the pathogenicity of Botrytis cinerea, the agent of gray mold disease. To investigate the importance of this protein involved in coat vesicles formation in eukaryotic cells, a T-DNA insertional mutant reduced in the expression of the CHC-encoding gene, and a mutant expressing a dominant-negative form of CHC were studied. Both mutants were strongly affected in pathogenicity. Characterization of the mutants revealed altered infection cushions and an important defect in protein secretion. This study demonstrates the essential role of clathrin in the infectious process of a plant pathogenic fungus and more particularly its role in virulence factors delivery.

2004 ◽  
Vol 15 (3) ◽  
pp. 1146-1159 ◽  
Author(s):  
Susan L. Kline-Smith ◽  
Alexey Khodjakov ◽  
Polla Hergert ◽  
Claire E. Walczak

The complex behavior of chromosomes during mitosis is accomplished by precise binding and highly regulated polymerization dynamics of kinetochore microtubules. Previous studies have implicated Kin Is, unique kinesins that depolymerize microtubules, in regulating chromosome positioning. We have characterized the immunofluorescence localization of centromere-bound MCAK and found that MCAK localized to inner kinetochores during prophase but was predominantly centromeric by metaphase. Interestingly, MCAK accumulated at leading kinetochores during congression but not during segregation. We tested the consequences of MCAK disruption by injecting a centromere dominant-negative protein into prophase cells. Depletion of centromeric MCAK led to reduced centromere stretch, delayed chromosome congression, alignment defects, and severe missegregation of chromosomes. Rates of chromosome movement were unchanged, suggesting that the primary role of MCAK is not to move chromosomes. Furthermore, we found that disruption of MCAK leads to multiple kinetochore–microtubule attachment defects, including merotelic, syntelic, and combined merotelic-syntelic attachments. These findings reveal an essential role for Kin Is in prevention and/or correction of improper kinetochore–microtubule attachments.


Plant Disease ◽  
2018 ◽  
Vol 102 (5) ◽  
pp. 886-891 ◽  
Author(s):  
Menglong Cong ◽  
Shun He ◽  
Hongju Ma ◽  
Guoqing Li ◽  
Fuxing Zhu

The ascomycete plant-pathogenic fungus Botrytis cinerea infects more than 1,400 plant species worldwide. Stimulatory effects of sublethal doses of fungicides on plant pathogens are of close relevance to disease management. In the present study, stimulatory effects of carbendazim on the virulence of B. cinerea to cucumber plants were investigated. Spraying carbendazim on cucumber plants at 3 to 200 μg/ml had stimulatory effects on the virulence of carbendazim-resistant isolates of B. cinerea and the maximum percent stimulations were 16.7 and 13.5% for isolates HBtom451 and HBstr491, respectively. Preconditioned mycelia (i.e., mycelia grown on potato dextrose agar [PDA] amended with carbendazim at concentrations of 10, 50, or 200 μg/ml) also showed increased virulence, and the maximum percent stimulations for isolates HBtom451 and HBstr491 were 7.9 and 9.5%, respectively. Compared with mycelia grown on PDA without carbendazim, virulence stimulation magnitudes of spraying carbendazim on leaves increased moderately but the concentrations of carbendazim that elicited the maximum stimulation increased 20- and 8-fold for preconditioned isolates HBtom451 and HBstr491, respectively. The time course of infection indicated that virulence stimulation was mediated by a direct stimulation mechanism. Studies of the physiological mechanism for stimulation demonstrated that carbendazim had no significant effects on tolerance to hydrogen peroxide, or on oxalic acid production in B. cinerea. These studies will deepen our understanding of quantitative features of hormetic effects of sublethal doses of fungicides on plant pathogens.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 858-858
Author(s):  
Anindya Chatterjee ◽  
Joydeep Ghosh ◽  
Baskar Ramdas ◽  
Sasidhar Vemula ◽  
Holly Martin ◽  
...  

Abstract Abstract 858 Multiple genetic checks and balances regulate the complex process of hematopoiesis. Despite these measures, mutations in crucial regulatory genes are still known to occur, which in some cases results in abnormal hematopoiesis, including leukemogenesis and/or myeloproliferative neoplasms (MPN). An example of a mutated gene that contributes to leukemogenesis is the FMS- like tyrosine kinase 3 (Flt3) that encodes a receptor tyrosine kinase, which plays an essential role in normal hematopoiesis. Interestingly, Flt3 is one of the most frequently mutated genes (∼30%) in acute myeloid leukemia (AML). Although various pathways downstream of Flt3 activation that lead to leukemic transformation have been extensively studied, effective treatment options for Flt3ITD mediated leukemogenesis is still warranted. In this study we used genetic, pharmacological and biochemical approaches to identify a novel role of Focal adhesion kinase (FAK) in Flt3ITD induced leukemogenesis. We observed hyperactivation of FAK in Flt3ITD expressing human and mouse cell. Treatment with FAK specific small molecule inhibitors F-14 and Y-11, inhibited proliferation and induced cell death of Flt3ITD expressing cells. Similarly, treatment of primary AML patient samples (n=9) expressing Flt3ITD mutations with F-14 inhibited their proliferation. Consistently expression of a dominant negative domain of FAK (FRNK) inhibited hyperproliferation and induced death of Flt3ITD bearing cells. Further, low-density bone marrow (LDBM) cells derived from FAK−/− mice transduced with Flt3ITD showed significantly reduced growth compared to wild-type (WT) LDBM cells transduced with Flt3ITD. We also observed hyperactivation of Rac1 in Flt3ITD expressing cells downstream of FAK, which was downregulated upon treatment with FAK inhibitor F-14 and Y11. Moreover, expression of dominant negative Rac1N17, or treatment with Rac1 inhibitor NSC23766 inhibited hyperproliferation of ITD bearing cells. We next wanted to ascertain the underlying mechanism of FAK mediated activation of Rac1 in Flt3ITD expressing cells. Toward this end, we found RacGEF Tiam1 to be hyperactive in Flt3ITD expressing cells, which was downregulated upon pharmacological inhibition of FAK. A Tiam1-Rac1 complex was also co-immunoprecipitated from Flt3ITD bearing cells, and this association was perturbed upon pharmacological inhibition of FAK. While, Stat5 a key molecule in Flt3ITD mediated leukemic progression, is activated and recruited to the nucleus to express Stat5 responsive genes; however the mechanism of Stat5 translocation to the nucleus is unknown. We observed a novel mechanism involving FAK and Rac1GTPase, in regulating the nuclear translocation of active Stat5. Pharmacological inhibition of FAK and Rac1 resulted in reduced Rac1 and STAT5 translocation into the nucleus, indicating a role of FAK-Rac-STAT5 signaling in Flt3ITD induced leukemogenesis. More importantly, expression of Flt3ITD in Rac1−/− or FAK−/− LDBM cells, showed inhibition of Stat5 activation and its failure to translocate into the nucleus when compared to Flt3ITD expression in WT-LDBM cells. We also observed association between active Rac1 and active Stat5 in the nucleus and in whole cell lysates of Flt3ITD bearing cells, and also in human AML patient samples (n=3), which was attenuated upon pharmacological inhibition of FAK. To determine the effect of FAK inhibition in vivo on Flt3ITD induced MPN, syngeneic transplantation was performed, and mice were treated with vehicle or with FAK inhibitor F-14. While vehicle treated mice developed MPN within 30 days, mice treated with F-14 showed significant overall survival (*p<0.02) and over 50% F-14 treated mice survived till 60 days post transplantation. Inhibition of kinases, and other signaling molecules, that are deregulated in cancer is an exciting new therapeutic strategy. This study indicate an essential role of FAK and Rac1 molecules in Flt3ITD mediated proliferation, survival and leukemogenesis, and demonstrates a novel mechanistic role of FAK/Rac1 in translocating active Stat5 into the nucleus and regulates transformation. To our knowledge, this is also the first time a role of RacGEF Tiam1 is observed in Flt3ITD induced leukemogenesis. Overall, this study demonstrates inhibition of FAK and Rac1 as potentially novel targets, and provides an alternative approach in treating humans suffering from Flt3-ITD induced AML. Disclosures: No relevant conflicts of interest to declare.


1999 ◽  
Vol 45 (10) ◽  
pp. 856-864 ◽  
Author(s):  
Michael J Bidochka ◽  
Susan Burke ◽  
Luna Ng

The insect and plant pathogens within the fungal genus Verticillium showed enzymatic adaptation (production and regulation) directed to the degradation of some of the polymers found in the integument of their respective hosts. For example, the facultative plant pathogens (V. albo-atrum and V. dahliae) produced greater levels of cellulase and xylanase than the facultative insect pathogen (V. lecanii). Verticillium lecanii produced extracellular subtilisin-like protease when grown in insect cuticle medium but not in plant cell wall medium, while the plant pathogen V. albo-atrum showed a diminished regulatory component in the production of this enzyme. The opportunistic pathogens (V. fungicola and V. coccosporum) and the saprobic species (V. rexianum) were less specific in the production and regulation of several proteases as well as cellulases and xylanases. A dendrogram based on cluster analysis compiled from fungal API-ZYM profiles showed commonalties in a broad array of extracellular enzymes within a host-pathogen group (i.e. insect or plant pathogen). The opportunistic pathogens were dispersed throughout the dendrogram, suggestive of the diversity in type and expression of extracellular enzymes.Key words: extracellular enzymes, pathogenic fungi.


2013 ◽  
Vol 726-731 ◽  
pp. 4525-4528
Author(s):  
Ping Yang ◽  
Qian Xu

T. asperellum is an important biocontrol fungus owing to their ability to antagonize plant pathogenic fungi. The biocontrol effects of T. asperellum were played by secreting many kinds of hydrolytic enzymes and antibiotics. T. asperellum producing more cell wall degrading enzymes when meeting plant pathogens. Moreover, the growth of the plant pathogens was inhibited by T. asperellum secondary metabolites. The yield of antibiotic 6-PP was 1.32 mg 6-PP/g mycelial dry weight. T. asperellum control plant pathogens through secreting cell wall degrading enzymes and producing antifungal metabolites.


2012 ◽  
Vol 59 (2) ◽  
pp. 51-58 ◽  
Author(s):  
Alicja Saniewska ◽  
Anna Jarecka ◽  
Zbigniew Biały ◽  
Marian Jurzysta

Antifungal activity of total saponins originated from roots of <i>Medicago hybrida</i> (Pourret) Trautv. were evaluated <i>in vitro</i> against six pathogenic fungi and eight individual major saponin glycosides were tested against one of the most susceptible fungi. The total saponins showed fungitoxic effect at all investigated concentrations (0.01%, 0.05% and 0.1%) but their potency was different for individual fungi. The highest saponin concentration (0.1%) was the most effective and the inhibition of <i>Fusarium oxysporum</i> f. sp. <i>callistephi</i>, <i>Botrytis cinerea</i>, <i>Botrytis tulipae</i>, <i>Phoma narcissi</i>, <i>Fusarium oxysporum</i> f. sp. <i>narcissi</i> was 84.4%, 69.9%, 68.6%, 57.2%, 55.0%, respectively. While <i>Fusarium oxysporum</i> Schlecht., a pathogen of <i>Muscari armeniacum</i>, was inhibited by 9.5% only. Eight major saponin glycosides isolated from the total saponins of <i>M. hybrida</i> roots were tested against the mycelium growth of <i>Botrytis tulipae</i>. The mycelium growth of the pathogen was greatly inhibited by hederagenin 3-O-<i>β</i>-D-glucopyranoside and medicagenic acid 3-O-<i>β</i>-D-glucopyranoside. Medicagenic acid 3-O-<i>β</i>-D-glucuronopyranosyl-28-O-<i>β</i>-D-glucopyranoside and oleanolic acid 3-O-[<i>β</i>-D-glucuronopyranosyl(1→2)-<i>α</i>-L-galactopyranosyl]-28-O-<i>β</i>-D-glucopyranoside showed low fungitoxic activity. Medicagenic acid 3-O-a-D-glucopyranosyl- 28-O-β-D-glucopyranoside, hederagenin 3-O-[α-L- hamnopyranosyl(1→2)-β-D-glucopyranosyl(1→2)-β-D-glucopyranosyl]- 28-O-α-D-glucopyranoside and hederagenin 3-O-<i>β</i>-D-glucuronopyranosyl-28-O-<i>β</i>-D- lucopyranoside did not limit or only slightly inhibited growth of the tested pathogen. While 2<i>β</i>, 3<i>β</i>-dihydroxyolean-12 ene-23-al-28-oic acid 3-O-<i>β</i>-D-glucuronopyranosyl-28-O-<i>β</i>-D-glucopyranoside slightly stimulated mycelium growth of <i>B. tulipae</i>.


2020 ◽  
Vol 21 (22) ◽  
pp. 8698
Author(s):  
Takayuki Motoyama

Plant pathogenic fungi produce a wide variety of secondary metabolites with unique and complex structures. However, most fungal secondary metabolism genes are poorly expressed under laboratory conditions. Moreover, the relationship between pathogenicity and secondary metabolites remains unclear. To activate silent gene clusters in fungi, successful approaches such as epigenetic control, promoter exchange, and heterologous expression have been reported. Pyricularia oryzae, a well-characterized plant pathogenic fungus, is the causal pathogen of rice blast disease. P. oryzae is also rich in secondary metabolism genes. However, biosynthetic genes for only four groups of secondary metabolites have been well characterized in this fungus. Biosynthetic genes for two of the four groups of secondary metabolites have been identified by activating secondary metabolism. This review focuses on the biosynthesis and roles of the four groups of secondary metabolites produced by P. oryzae. These secondary metabolites include melanin, a polyketide compound required for rice infection; pyriculols, phytotoxic polyketide compounds; nectriapyrones, antibacterial polyketide compounds produced mainly by symbiotic fungi including endophytes and plant pathogens; and tenuazonic acid, a well-known mycotoxin produced by various plant pathogenic fungi and biosynthesized by a unique NRPS-PKS enzyme.


Plant Disease ◽  
2019 ◽  
Vol 103 (1) ◽  
pp. 95-101 ◽  
Author(s):  
Menglong Cong ◽  
Shun He ◽  
Jun Zhang ◽  
Chaoxi Luo ◽  
Fuxing Zhu

Hormetic effects of fungicides on mycelial growth and virulence of plant pathogenic fungi have been reported, but the effects of fungicide mixtures on virulence hormesis of plant pathogens remain to be investigated. In this study, hormetic effects of mixtures of carbendazim and iprodione on the virulence of two carbendazim-resistant isolates of Botrytis cinerea were determined. Spraying carbendazim alone at 3 to 800 μg/ml exhibited hormetic effects on virulence to cucumber leaves, and carbendazim at 10 μg/ml had the maximum stimulation of 16.7% for isolate HBtom451. Spraying iprodione alone at 0.0001 to 0.0625 μg/ml exhibited hormetic effects on virulence, and iprodione at 0.025 μg/ml had the maximum stimulation of 18.7% for isolate HBtom451. However, spraying simultaneously carbendazim at 800 μg/ml and iprodione at 0.0625 μg/ml showed inhibitory effects on virulence to cucumber leaves. The mixture of carbendazim at 3 μg/ml and iprodione at 0.0001 μg/ml had much higher virulence stimulations than either fungicide at the same concentration alone. The maximum stimulation for the mixtures occurred at 10 and 0.0005 μg/ml for carbendazim and iprodione, respectively, and these concentrations were much lower than the concentration of their respective fungicide alone eliciting the maximum stimulations. The maximum stimulation amplitude for the mixture was slightly higher than that of each fungicide alone. These results demonstrated that carbendazim and iprodione mainly had dose-additive rather than amplitude-additive interactions when sprayed simultaneously with regard to virulence stimulations. Studies on virulence stimulations for mycelia treated with fungicide in potato dextrose agar showed that the maximum stimulation for the mixtures occurred at concentrations much lower than the concentration of carbendazim alone, indicating a dose-additive interaction when compared with carbendazim hormesis. Studies on potential physiological mechanisms of hormesis showed that increased tolerance to H2O2 may be one of the mechanisms for virulence hormesis for the mixtures of iprodione and carbendazim. These studies will advance our understanding of hormesis of fungicide mixtures.


2013 ◽  
Vol 52 ◽  
pp. 1-8 ◽  
Author(s):  
Serena Morcx ◽  
Caroline Kunz ◽  
Mathias Choquer ◽  
Sébastien Assie ◽  
Eddy Blondet ◽  
...  

2003 ◽  
Vol 77 (21) ◽  
pp. 11754-11766 ◽  
Author(s):  
Matloob Husain ◽  
Bernard Moss

ABSTRACT Vaccinia virus assembles two distinct lipoprotein membranes. The primary membrane contains nonglycosylated proteins, appears as crescents in the cytoplasm, and delimits immature and mature intracellular virions. The secondary or wrapping membrane contains glycoproteins, is derived from virus-modified trans-Golgi or endosomal cisternae, forms a loose coat around some intracellular mature virions, and becomes the envelope of extracellular virions. Although the mode of formation of the wrapping membrane is partially understood, we know less about the primary membrane. Recent reports posit that the primary membrane originates from the endoplasmic reticulum-Golgi intermediate compartment (ERGIC). According to this model, viral primary membrane proteins are cotranslationally inserted into the ER and accumulate in the ERGIC. To test the ERGIC model, we employed Sar1H79G, a dominant negative form of the Sar1 protein, which is an essential component of coatomer protein II (COPII)-mediated cargo transport from the ER to the ERGIC and other post-ER compartments. Overexpression of Sar1H79G by transfection or by a novel recombinant vaccinia virus with an inducible Sar1H79G gene resulted in retention of ERGIC 53 in the ER but did not interfere with localization of viral primary membrane proteins in factory regions or with formation of viral crescent membranes and infectious intracellular mature virions. Wrapping of intracellular mature virions and formation of extracellular virions did not occur, however, because some proteins that are essential for the secondary membrane were retained in the ER as a consequence of Sar1H79G overexpression. Our data argue against an essential role of COPII-mediated cargo transport and the ERGIC in the formation of the viral primary membrane. Instead, viral membranes may be derived directly from the ER or by a novel mechanism.


Sign in / Sign up

Export Citation Format

Share Document