scholarly journals Prediction of Maize Phenotypic Traits With Genomic and Environmental Predictors Using Gradient Boosting Frameworks

2021 ◽  
Vol 12 ◽  
Author(s):  
Cathy C. Westhues ◽  
Gregory S. Mahone ◽  
Sofia da Silva ◽  
Patrick Thorwarth ◽  
Malthe Schmidt ◽  
...  

The development of crop varieties with stable performance in future environmental conditions represents a critical challenge in the context of climate change. Environmental data collected at the field level, such as soil and climatic information, can be relevant to improve predictive ability in genomic prediction models by describing more precisely genotype-by-environment interactions, which represent a key component of the phenotypic response for complex crop agronomic traits. Modern predictive modeling approaches can efficiently handle various data types and are able to capture complex nonlinear relationships in large datasets. In particular, machine learning techniques have gained substantial interest in recent years. Here we examined the predictive ability of machine learning-based models for two phenotypic traits in maize using data collected by the Maize Genomes to Fields (G2F) Initiative. The data we analyzed consisted of multi-environment trials (METs) dispersed across the United States and Canada from 2014 to 2017. An assortment of soil- and weather-related variables was derived and used in prediction models alongside genotypic data. Linear random effects models were compared to a linear regularized regression method (elastic net) and to two nonlinear gradient boosting methods based on decision tree algorithms (XGBoost, LightGBM). These models were evaluated under four prediction problems: (1) tested and new genotypes in a new year; (2) only unobserved genotypes in a new year; (3) tested and new genotypes in a new site; (4) only unobserved genotypes in a new site. Accuracy in forecasting grain yield performance of new genotypes in a new year was improved by up to 20% over the baseline model by including environmental predictors with gradient boosting methods. For plant height, an enhancement of predictive ability could neither be observed by using machine learning-based methods nor by using detailed environmental information. An investigation of key environmental factors using gradient boosting frameworks also revealed that temperature at flowering stage, frequency and amount of water received during the vegetative and grain filling stage, and soil organic matter content appeared as important predictors for grain yield in our panel of environments.

2019 ◽  
Vol 21 (9) ◽  
pp. 662-669 ◽  
Author(s):  
Junnan Zhao ◽  
Lu Zhu ◽  
Weineng Zhou ◽  
Lingfeng Yin ◽  
Yuchen Wang ◽  
...  

Background: Thrombin is the central protease of the vertebrate blood coagulation cascade, which is closely related to cardiovascular diseases. The inhibitory constant Ki is the most significant property of thrombin inhibitors. Method: This study was carried out to predict Ki values of thrombin inhibitors based on a large data set by using machine learning methods. Taking advantage of finding non-intuitive regularities on high-dimensional datasets, machine learning can be used to build effective predictive models. A total of 6554 descriptors for each compound were collected and an efficient descriptor selection method was chosen to find the appropriate descriptors. Four different methods including multiple linear regression (MLR), K Nearest Neighbors (KNN), Gradient Boosting Regression Tree (GBRT) and Support Vector Machine (SVM) were implemented to build prediction models with these selected descriptors. Results: The SVM model was the best one among these methods with R2=0.84, MSE=0.55 for the training set and R2=0.83, MSE=0.56 for the test set. Several validation methods such as yrandomization test and applicability domain evaluation, were adopted to assess the robustness and generalization ability of the model. The final model shows excellent stability and predictive ability and can be employed for rapid estimation of the inhibitory constant, which is full of help for designing novel thrombin inhibitors.


2020 ◽  
Vol 41 (S1) ◽  
pp. s521-s522
Author(s):  
Debarka Sengupta ◽  
Vaibhav Singh ◽  
Seema Singh ◽  
Dinesh Tewari ◽  
Mudit Kapoor ◽  
...  

Background: The rising trend of antibiotic resistance imposes a heavy burden on healthcare both clinically and economically (US$55 billion), with 23,000 estimated annual deaths in the United States as well as increased length of stay and morbidity. Machine-learning–based methods have, of late, been used for leveraging patient’s clinical history and demographic information to predict antimicrobial resistance. We developed a machine-learning model ensemble that maximizes the accuracy of such a drug-sensitivity versus resistivity classification system compared to the existing best-practice methods. Methods: We first performed a comprehensive analysis of the association between infecting bacterial species and patient factors, including patient demographics, comorbidities, and certain healthcare-specific features. We leveraged the predictable nature of these complex associations to infer patient-specific antibiotic sensitivities. Various base-learners, including k-NN (k-nearest neighbors) and gradient boosting machine (GBM), were used to train an ensemble model for confident prediction of antimicrobial susceptibilities. Base learner selection and model performance evaluation was performed carefully using a variety of standard metrics, namely accuracy, precision, recall, F1 score, and Cohen κ. Results: For validating the performance on MIMIC-III database harboring deidentified clinical data of 53,423 distinct patient admissions between 2001 and 2012, in the intensive care units (ICUs) of the Beth Israel Deaconess Medical Center in Boston, Massachusetts. From ~11,000 positive cultures, we used 4 major specimen types namely urine, sputum, blood, and pus swab for evaluation of the model performance. Figure 1 shows the receiver operating characteristic (ROC) curves obtained for bloodstream infection cases upon model building and prediction on 70:30 split of the data. We received area under the curve (AUC) values of 0.88, 0.92, 0.92, and 0.94 for urine, sputum, blood, and pus swab samples, respectively. Figure 2 shows the comparative performance of our proposed method as well as some off-the-shelf classification algorithms. Conclusions: Highly accurate, patient-specific predictive antibiogram (PSPA) data can aid clinicians significantly in antibiotic recommendation in ICU, thereby accelerating patient recovery and curbing antimicrobial resistance.Funding: This study was supported by Circle of Life Healthcare Pvt. Ltd.Disclosures: None


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Matthijs Blankers ◽  
Louk F. M. van der Post ◽  
Jack J. M. Dekker

Abstract Background Accurate prediction models for whether patients on the verge of a psychiatric criseis need hospitalization are lacking and machine learning methods may help improve the accuracy of psychiatric hospitalization prediction models. In this paper we evaluate the accuracy of ten machine learning algorithms, including the generalized linear model (GLM/logistic regression) to predict psychiatric hospitalization in the first 12 months after a psychiatric crisis care contact. We also evaluate an ensemble model to optimize the accuracy and we explore individual predictors of hospitalization. Methods Data from 2084 patients included in the longitudinal Amsterdam Study of Acute Psychiatry with at least one reported psychiatric crisis care contact were included. Target variable for the prediction models was whether the patient was hospitalized in the 12 months following inclusion. The predictive power of 39 variables related to patients’ socio-demographics, clinical characteristics and previous mental health care contacts was evaluated. The accuracy and area under the receiver operating characteristic curve (AUC) of the machine learning algorithms were compared and we also estimated the relative importance of each predictor variable. The best and least performing algorithms were compared with GLM/logistic regression using net reclassification improvement analysis and the five best performing algorithms were combined in an ensemble model using stacking. Results All models performed above chance level. We found Gradient Boosting to be the best performing algorithm (AUC = 0.774) and K-Nearest Neighbors to be the least performing (AUC = 0.702). The performance of GLM/logistic regression (AUC = 0.76) was slightly above average among the tested algorithms. In a Net Reclassification Improvement analysis Gradient Boosting outperformed GLM/logistic regression by 2.9% and K-Nearest Neighbors by 11.3%. GLM/logistic regression outperformed K-Nearest Neighbors by 8.7%. Nine of the top-10 most important predictor variables were related to previous mental health care use. Conclusions Gradient Boosting led to the highest predictive accuracy and AUC while GLM/logistic regression performed average among the tested algorithms. Although statistically significant, the magnitude of the differences between the machine learning algorithms was in most cases modest. The results show that a predictive accuracy similar to the best performing model can be achieved when combining multiple algorithms in an ensemble model.


Vaccines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 709
Author(s):  
Ivan Dimitrov ◽  
Nevena Zaharieva ◽  
Irini Doytchinova

The identification of protective immunogens is the most important and vigorous initial step in the long-lasting and expensive process of vaccine design and development. Machine learning (ML) methods are very effective in data mining and in the analysis of big data such as microbial proteomes. They are able to significantly reduce the experimental work for discovering novel vaccine candidates. Here, we applied six supervised ML methods (partial least squares-based discriminant analysis, k nearest neighbor (kNN), random forest (RF), support vector machine (SVM), random subspace method (RSM), and extreme gradient boosting) on a set of 317 known bacterial immunogens and 317 bacterial non-immunogens and derived models for immunogenicity prediction. The models were validated by internal cross-validation in 10 groups from the training set and by the external test set. All of them showed good predictive ability, but the xgboost model displays the most prominent ability to identify immunogens by recognizing 84% of the known immunogens in the test set. The combined RSM-kNN model was the best in the recognition of non-immunogens, identifying 92% of them in the test set. The three best performing ML models (xgboost, RSM-kNN, and RF) were implemented in the new version of the server VaxiJen, and the prediction of bacterial immunogens is now based on majority voting.


2020 ◽  
Author(s):  
Tahmina Nasrin Poly ◽  
Md.Mohaimenul Islam ◽  
Muhammad Solihuddin Muhtar ◽  
Hsuan-Chia Yang ◽  
Phung Anh (Alex) Nguyen ◽  
...  

BACKGROUND Computerized physician order entry (CPOE) systems are incorporated into clinical decision support systems (CDSSs) to reduce medication errors and improve patient safety. Automatic alerts generated from CDSSs can directly assist physicians in making useful clinical decisions and can help shape prescribing behavior. Multiple studies reported that approximately 90%-96% of alerts are overridden by physicians, which raises questions about the effectiveness of CDSSs. There is intense interest in developing sophisticated methods to combat alert fatigue, but there is no consensus on the optimal approaches so far. OBJECTIVE Our objective was to develop machine learning prediction models to predict physicians’ responses in order to reduce alert fatigue from disease medication–related CDSSs. METHODS We collected data from a disease medication–related CDSS from a university teaching hospital in Taiwan. We considered prescriptions that triggered alerts in the CDSS between August 2018 and May 2019. Machine learning models, such as artificial neural network (ANN), random forest (RF), naïve Bayes (NB), gradient boosting (GB), and support vector machine (SVM), were used to develop prediction models. The data were randomly split into training (80%) and testing (20%) datasets. RESULTS A total of 6453 prescriptions were used in our model. The ANN machine learning prediction model demonstrated excellent discrimination (area under the receiver operating characteristic curve [AUROC] 0.94; accuracy 0.85), whereas the RF, NB, GB, and SVM models had AUROCs of 0.93, 0.91, 0.91, and 0.80, respectively. The sensitivity and specificity of the ANN model were 0.87 and 0.83, respectively. CONCLUSIONS In this study, ANN showed substantially better performance in predicting individual physician responses to an alert from a disease medication–related CDSS, as compared to the other models. To our knowledge, this is the first study to use machine learning models to predict physician responses to alerts; furthermore, it can help to develop sophisticated CDSSs in real-world clinical settings.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Vishwesh Venkatraman

Abstract Motivation The absorption, distribution, metabolism, excretion, and toxicity (ADMET) of drugs plays a key role in determining which among the potential candidates are to be prioritized. In silico approaches based on machine learning methods are becoming increasing popular, but are nonetheless limited by the availability of data. With a view to making both data and models available to the scientific community, we have developed FPADMET which is a repository of molecular fingerprint-based predictive models for ADMET properties. Summary In this article, we have examined the efficacy of fingerprint-based machine learning models for a large number of ADMET-related properties. The predictive ability of a set of 20 different binary fingerprints (based on substructure keys, atom pairs, local path environments, as well as custom fingerprints such as all-shortest paths) for over 50 ADMET and ADMET-related endpoints have been evaluated as part of the study. We find that for a majority of the properties, fingerprint-based random forest models yield comparable or better performance compared with traditional 2D/3D molecular descriptors. Availability The models are made available as part of open access software that can be downloaded from https://gitlab.com/vishsoft/fpadmet.


Diagnostics ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1909
Author(s):  
Dougho Park ◽  
Eunhwan Jeong ◽  
Haejong Kim ◽  
Hae Wook Pyun ◽  
Haemin Kim ◽  
...  

Background: Functional outcomes after acute ischemic stroke are of great concern to patients and their families, as well as physicians and surgeons who make the clinical decisions. We developed machine learning (ML)-based functional outcome prediction models in acute ischemic stroke. Methods: This retrospective study used a prospective cohort database. A total of 1066 patients with acute ischemic stroke between January 2019 and March 2021 were included. Variables such as demographic factors, stroke-related factors, laboratory findings, and comorbidities were utilized at the time of admission. Five ML algorithms were applied to predict a favorable functional outcome (modified Rankin Scale 0 or 1) at 3 months after stroke onset. Results: Regularized logistic regression showed the best performance with an area under the receiver operating characteristic curve (AUC) of 0.86. Support vector machines represented the second-highest AUC of 0.85 with the highest F1-score of 0.86, and finally, all ML models applied achieved an AUC > 0.8. The National Institute of Health Stroke Scale at admission and age were consistently the top two important variables for generalized logistic regression, random forest, and extreme gradient boosting models. Conclusions: ML-based functional outcome prediction models for acute ischemic stroke were validated and proven to be readily applicable and useful.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Susan Idicula-Thomas ◽  
Ulka Gawde ◽  
Prabhat Jha

Abstract Background Machine learning (ML) algorithms have been successfully employed for prediction of outcomes in clinical research. In this study, we have explored the application of ML-based algorithms to predict cause of death (CoD) from verbal autopsy records available through the Million Death Study (MDS). Methods From MDS, 18826 unique childhood deaths at ages 1–59 months during the time period 2004–13 were selected for generating the prediction models of which over 70% of deaths were caused by six infectious diseases (pneumonia, diarrhoeal diseases, malaria, fever of unknown origin, meningitis/encephalitis, and measles). Six popular ML-based algorithms such as support vector machine, gradient boosting modeling, C5.0, artificial neural network, k-nearest neighbor, classification and regression tree were used for building the CoD prediction models. Results SVM algorithm was the best performer with a prediction accuracy of over 0.8. The highest accuracy was found for diarrhoeal diseases (accuracy = 0.97) and the lowest was for meningitis/encephalitis (accuracy = 0.80). The top signs/symptoms for classification of these CoDs were also extracted for each of the diseases. A combination of signs/symptoms presented by the deceased individual can effectively lead to the CoD diagnosis. Conclusions Overall, this study affirms that verbal autopsy tools are efficient in CoD diagnosis and that automated classification parameters captured through ML could be added to verbal autopsies to improve classification of causes of death.


2021 ◽  
Author(s):  
Cathy C. Westhues ◽  
Henner Simianer ◽  
Timothy M. Beissinger

We introduce the R-package learnMET, developed as a flexible framework to enable a collection of analyses on multi-environment trial (MET) breeding data with machine learning-based models. learnMET allows the combination of genomic information with environmental data such as climate and/or soil characteristics. Notably, the package offers the possibility of incorporating weather data from field weather stations, or can retrieve global meteorological datasets from a NASA database. Daily weather data can be aggregated in daily windows based on naive (for instance, daily windows with a fixed number of days) or phenological approaches. Different machine learning methods for genomic prediction are implemented, including gradient boosted trees, random forests, stacked ensemble models, and multi-layer perceptrons. These prediction models can be evaluated via a collection of cross-validation schemes that mimic typical scenarios encountered by plant breeders working with MET experimental data in a user-friendly way. The package is fully open source and accessible on GitHub.


Sign in / Sign up

Export Citation Format

Share Document