scholarly journals lepidium-like, a Naturally Occurring Mutant of Capsella bursa-pastoris, and Its Implications on the Evolution of Petal Loss in Cruciferae

2021 ◽  
Vol 12 ◽  
Author(s):  
Anna V. Klepikova ◽  
Elina D. Shnayder ◽  
Artem S. Kasianov ◽  
Margarita V. Remizowa ◽  
Dmitry D. Sokoloff ◽  
...  

Naturally occurring mutants whose phenotype recapitulates the changes that distinguish closely related species are of special interest from the evolutionary point of view. They can give a key about the genetic control of the changes that led to speciation. In this study, we described lepidium-like (lel), a naturally occurring variety of an allotetraploid species Capsella bursa-pastoris that is characterized by the typical loss of all four petals. In some cases, one or two basal flowers in the raceme had one or two small petals. The number and structure of other floral organs are not affected. Our study of flower development in the mutant showed that once initiated, petals either cease further development and cannot be traced in anthetic flowers or sometimes develop to various degrees. lel plants showed an earlier beginning of floral organ initiation and delayed petal initiation compared to the wild-type plants. lel phenotype has a wide geographical distribution, being found at the northern extremity of the species range as well as in the central part. The genetic analysis of inheritance demonstrated that lel phenotype is controlled by two independent loci. While the flower in the family Cruciferae generally has a very stable structure (i.e., four sepals, four petals, six stamens, and two carpels), several deviations from this ground plan are known, in particular in the genus Lepidium, C. bursa-pastoris is an emerging model for the study of polyploidy (which is also very widespread in Cruciferae); the identification and characterization of the apetalous mutant lays a foundation for further research of morphological evolution in polyploids.

Genes ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 517 ◽  
Author(s):  
Daniel García-Souto ◽  
Sandra Alonso-Rubido ◽  
Diana Costa ◽  
José Eirín-López ◽  
Emilio Rolán-Álvarez ◽  
...  

Periwinkles of the family Littorinidae (Children, 1834) are common members of seashore littoral communities worldwide. Although the family is composed of more than 200 species belonging to 18 genera, chromosome numbers have been described in only eleven of them. A molecular cytogenetic analysis of nine periwinkle species, the rough periwinkles Littorina arcana, L. saxatilis, and L. compressa, the flat periwinkles L. obtusata and L. fabalis, the common periwinkle L. littorea, the mangrove periwinkle Littoraria angulifera, the beaded periwinkle Cenchritis muricatus, and the small periwinkle Melarhaphe neritoides was performed. All species showed diploid chromosome numbers of 2n = 34, and karyotypes were mostly composed of metacentric and submetacentric chromosome pairs. None of the periwinkle species showed chromosomal differences between male and female specimens. The chromosomal mapping of major and minor rDNA and H3 histone gene clusters by fluorescent in situ hybridization demonstrated that the patterns of distribution of these DNA sequences were conserved among closely related species and differed among less related ones. All signals occupied separated loci on different chromosome pairs without any evidence of co-localization in any of the species.


2014 ◽  
Vol 81 (5) ◽  
pp. 1700-1707 ◽  
Author(s):  
Julia Otte ◽  
Achim Mall ◽  
Daniel M. Schubert ◽  
Martin Könneke ◽  
Ivan A. Berg

ABSTRACTThe recently described ammonia-oxidizing archaea of the phylumThaumarchaeotaare highly abundant in marine, geothermal, and terrestrial environments. All characterized representatives of this phylum are aerobic chemolithoautotrophic ammonia oxidizers assimilating inorganic carbon via a recently described thaumarchaeal version of the 3-hydroxypropionate/4-hydroxybutyrate cycle. Although some genes coding for the enzymes of this cycle have been identified in the genomes ofThaumarchaeota, many other genes of the cycle are not homologous to the characterized enzymes from other species and can therefore not be identified bioinformatically. Here we report the identification and characterization of malonic semialdehyde reductase Nmar_1110 in the cultured marine thaumarchaeonNitrosopumilus maritimus. This enzyme, which catalyzes the reduction of malonic semialdehyde with NAD(P)H to 3-hydroxypropionate, belongs to the family of iron-containing alcohol dehydrogenases and is not homologous to malonic semialdehyde reductases fromChloroflexus aurantiacusandMetallosphaera sedula. It is highly specific to malonic semialdehyde (Km, 0.11 mM;Vmax, 86.9 μmol min−1mg−1of protein) and exhibits only low activity with succinic semialdehyde (Km, 4.26 mM;Vmax, 18.5 μmol min−1mg−1of protein). Homologues ofN. maritimusmalonic semialdehyde reductase can be found in the genomes of allThaumarchaeotasequenced so far and form a well-defined cluster in the phylogenetic tree of iron-containing alcohol dehydrogenases. We conclude that malonic semialdehyde reductase can be regarded as a characteristic enzyme for the thaumarchaeal version of the 3-hydroxypropionate/4-hydroxybutyrate cycle.


2007 ◽  
Vol 81 (22) ◽  
pp. 12298-12306 ◽  
Author(s):  
Tomoyuki Shiota ◽  
Michio Okame ◽  
Sayaka Takanashi ◽  
Pattara Khamrin ◽  
Makiko Takagi ◽  
...  

ABSTRACT Norovirus, which belongs to the family Caliciviridae, is one of the major causes of nonbacterial acute gastroenteritis in the world. The main human noroviruses are of genogroup I (GI) and genogroup II (GII), which were subdivided further into at least 15 and 18 genotypes (GI/1 to GI/15 and GII/1 to GII/18), respectively. The development of immunological diagnosis for norovirus had been hindered by the antigen specificity of the polyclonal antibody. Therefore, several laboratories have produced broadly reactive monoclonal antibodies, which recognize the linear GI and GII cross-reactive epitopes or the conformational GI-specific epitope. In this study, we characterized the novel monoclonal antibody 14-1 (MAb14-1) for further development of the rapid immunochromatography test. Our results demonstrated that MAb14-1 could recognize 15 recombinant virus-like particles (GI/1, 4, 8, and 11 and GII/1 to 7 and 12 to 15) and showed weak affinity to the virus-like particle of GI/3. This recognition range is the broadest of the existing monoclonal antibodies. The epitope for MAb14-1 was identified by fragment, sequence, structural, and mutational analyses. Both terminal antigenic regions (amino acid positions 418 to 426 and 526 to 534) on the C-terminal P1 domain formed the conformational epitope and were in the proximity of the insertion region (positions 427 to 525). These regions contained six amino acids responsible for antigenicity that were conserved among genogroup(s), genus, and Caliciviridae. This epitope mapping explained the broad reactivity and different titers among GI and GII. To our knowledge, we are the first group to identify the GI and GII cross-reactive monoclonal antibody, which recognizes the novel conformational epitope. From these data, MAb14-1 could be used further to develop immunochromatography.


2015 ◽  
Vol 17 (11) ◽  
pp. 4646-4658 ◽  
Author(s):  
Lian Zhou ◽  
Xing-Yu Wang ◽  
Shuang Sun ◽  
Li-Chao Yang ◽  
Bo-Le Jiang ◽  
...  

2009 ◽  
Vol 53 (10) ◽  
pp. 4320-4326 ◽  
Author(s):  
Boukaré Zeba ◽  
Filomena De Luca ◽  
Alain Dubus ◽  
Michael Delmarcelle ◽  
Jacques Simporé ◽  
...  

ABSTRACT The genus Chryseobacterium and other genera belonging to the family Flavobacteriaceae include organisms that can behave as human pathogens and are known to cause different kinds of infections. Several species of Flavobacteriaceae, including Chryseobacterium indologenes, are naturally resistant to β-lactam antibiotics (including carbapenems), due to the production of a resident metallo-β-lactamase. Although C. indologenes presently constitutes a limited clinical threat, the incidence of infections caused by this organism is increasing in some settings, where isolates that exhibit multidrug resistance phenotypes (including resistance to aminoglycosides and quinolones) have been detected. Here, we report the identification and characterization of a new IND-type variant from a C. indologenes isolate from Burkina Faso that is resistant to β-lactams and aminoglycosides. The levels of sequence identity of the new variant to other IND-type metallo-β-lactamases range between 72 and 90% (for IND-4 and IND-5, respectively). The purified enzyme exhibited N-terminal heterogeneity and a posttranslational modification consisting of the presence of a pyroglutamate residue at the N terminus. IND-6 shows a broad substrate profile, with overall higher turnover rates than IND-5 and higher activities than IND-2 and IND-5 against ceftazidime and cefepime.


Retrovirology ◽  
2012 ◽  
Vol 9 (1) ◽  
pp. 86 ◽  
Author(s):  
Sarah Welbourn ◽  
Eri Miyagi ◽  
Tommy E White ◽  
Felipe Diaz-Griffero ◽  
Klaus Strebel

Hematology ◽  
2016 ◽  
Vol 2016 (1) ◽  
pp. 293-301 ◽  
Author(s):  
Rose B. McGee ◽  
Kim E. Nichols

AbstractThe last 30 years have witnessed tremendous advances in our understanding of the cancer genetic susceptibility syndromes, including those that predispose to hematopoietic malignancies. The identification and characterization of families affected by these syndromes is enhancing our knowledge of the oncologic and nononcologic manifestations associated with predisposing germ line mutations and providing insights into the underlying disease mechanisms. Here, we provide an overview of the cancer genetic susceptibility syndromes, focusing on aspects relevant to the evaluation of patients with leukemia and lymphoma. Guidance is provided to facilitate recognition of these syndromes by hematologists/oncologists, including descriptions of the family history features, tumor genotype, and physical or developmental findings that should raise concern for an underlying cancer genetic syndrome. The clinical implications and management challenges associated with cancer susceptibility syndromes are also discussed.


2006 ◽  
Vol 80 (2) ◽  
pp. 615-622 ◽  
Author(s):  
Hanna E. Walukiewicz ◽  
John E. Johnson ◽  
Anette Schneemann

ABSTRACT We report the identification and characterization of a viral intermediate formed during infection of Drosophila cells with the nodavirus Flock House virus (FHV). We observed that even at a very low multiplicity of infection, only 70% of the input virus stayed attached to or entered the cells, while the remaining 30% of the virus eluted from cells after initial binding. The eluted FHV particles did not rebind to Drosophila cells and, thus, could no longer initiate infection by the receptor-mediated entry pathway. FHV virus-like particles with the same capsid composition as native FHV but containing cellular RNA also exhibited formation of eluted particles when incubated with the cells. A maturation cleavage-defective mutant of FHV, however, did not. Compared to naïve FHV particles, i.e., particles that had never been incubated with cells, eluted particles showed an acid-sensitive phenotype and morphological alterations. Furthermore, eluted particles had lost a fraction of the internally located capsid protein gamma. Based on these results, we hypothesize that FHV eluted particles represent an infection intermediate analogous to eluted particles observed for members of the family Picornaviridae.


2021 ◽  
Author(s):  
Lin-Lin Yan ◽  
Cui-Xia Pu ◽  
Ying Sun

Abstract The receptor-like kinase OsCR4 plays an important role in vegetative and reproductive growth in rice; it controls embryo morphogenesis, leaf development, and interlocking of the palea and lemma. To identify proteins capable of interacting with the OsCR4 extracellular domain (OsCR4E), we performed a yeast two-hybrid assay and obtained two candidate proteins, OsCIP1 and OsCIP2. Both proteins are cysteine-rich and harbor an N-terminal signal peptide. Localization studies showed OsCIP1-GFP accumulation at the cell surface and OsCIP2-GFP accumulation in cytoplasmic vesicles. Immunoblotting revealed the presence of full-length and truncated OsCIP1-GFP fusion proteins in tobacco leaves and rice roots, and Q62 was identified as the key site for protein cleavage. OsCIP1 was mainly expressed in vascular bundles and the interlocking tissues of the palea and lemma, while OsCIP2 was mainly expressed in mature seeds. Compared to wild type, oscip1 mutant plants exhibited a short seminal root. A phylogenetic tree analysis showed that the homologs of OsCIP1 we identified all belong to the family Gramineae. Our results suggest that OsCIP1 interacts with the extracellular domain of OsCR4.


Sign in / Sign up

Export Citation Format

Share Document