scholarly journals Identification and Characterization of the OsCR4 Extracellular Domain-Interacting Proteins OsCIP1 and OsCIP2 in Rice

Author(s):  
Lin-Lin Yan ◽  
Cui-Xia Pu ◽  
Ying Sun

Abstract The receptor-like kinase OsCR4 plays an important role in vegetative and reproductive growth in rice; it controls embryo morphogenesis, leaf development, and interlocking of the palea and lemma. To identify proteins capable of interacting with the OsCR4 extracellular domain (OsCR4E), we performed a yeast two-hybrid assay and obtained two candidate proteins, OsCIP1 and OsCIP2. Both proteins are cysteine-rich and harbor an N-terminal signal peptide. Localization studies showed OsCIP1-GFP accumulation at the cell surface and OsCIP2-GFP accumulation in cytoplasmic vesicles. Immunoblotting revealed the presence of full-length and truncated OsCIP1-GFP fusion proteins in tobacco leaves and rice roots, and Q62 was identified as the key site for protein cleavage. OsCIP1 was mainly expressed in vascular bundles and the interlocking tissues of the palea and lemma, while OsCIP2 was mainly expressed in mature seeds. Compared to wild type, oscip1 mutant plants exhibited a short seminal root. A phylogenetic tree analysis showed that the homologs of OsCIP1 we identified all belong to the family Gramineae. Our results suggest that OsCIP1 interacts with the extracellular domain of OsCR4.

2014 ◽  
Vol 81 (5) ◽  
pp. 1700-1707 ◽  
Author(s):  
Julia Otte ◽  
Achim Mall ◽  
Daniel M. Schubert ◽  
Martin Könneke ◽  
Ivan A. Berg

ABSTRACTThe recently described ammonia-oxidizing archaea of the phylumThaumarchaeotaare highly abundant in marine, geothermal, and terrestrial environments. All characterized representatives of this phylum are aerobic chemolithoautotrophic ammonia oxidizers assimilating inorganic carbon via a recently described thaumarchaeal version of the 3-hydroxypropionate/4-hydroxybutyrate cycle. Although some genes coding for the enzymes of this cycle have been identified in the genomes ofThaumarchaeota, many other genes of the cycle are not homologous to the characterized enzymes from other species and can therefore not be identified bioinformatically. Here we report the identification and characterization of malonic semialdehyde reductase Nmar_1110 in the cultured marine thaumarchaeonNitrosopumilus maritimus. This enzyme, which catalyzes the reduction of malonic semialdehyde with NAD(P)H to 3-hydroxypropionate, belongs to the family of iron-containing alcohol dehydrogenases and is not homologous to malonic semialdehyde reductases fromChloroflexus aurantiacusandMetallosphaera sedula. It is highly specific to malonic semialdehyde (Km, 0.11 mM;Vmax, 86.9 μmol min−1mg−1of protein) and exhibits only low activity with succinic semialdehyde (Km, 4.26 mM;Vmax, 18.5 μmol min−1mg−1of protein). Homologues ofN. maritimusmalonic semialdehyde reductase can be found in the genomes of allThaumarchaeotasequenced so far and form a well-defined cluster in the phylogenetic tree of iron-containing alcohol dehydrogenases. We conclude that malonic semialdehyde reductase can be regarded as a characteristic enzyme for the thaumarchaeal version of the 3-hydroxypropionate/4-hydroxybutyrate cycle.


2009 ◽  
Vol 53 (10) ◽  
pp. 4320-4326 ◽  
Author(s):  
Boukaré Zeba ◽  
Filomena De Luca ◽  
Alain Dubus ◽  
Michael Delmarcelle ◽  
Jacques Simporé ◽  
...  

ABSTRACT The genus Chryseobacterium and other genera belonging to the family Flavobacteriaceae include organisms that can behave as human pathogens and are known to cause different kinds of infections. Several species of Flavobacteriaceae, including Chryseobacterium indologenes, are naturally resistant to β-lactam antibiotics (including carbapenems), due to the production of a resident metallo-β-lactamase. Although C. indologenes presently constitutes a limited clinical threat, the incidence of infections caused by this organism is increasing in some settings, where isolates that exhibit multidrug resistance phenotypes (including resistance to aminoglycosides and quinolones) have been detected. Here, we report the identification and characterization of a new IND-type variant from a C. indologenes isolate from Burkina Faso that is resistant to β-lactams and aminoglycosides. The levels of sequence identity of the new variant to other IND-type metallo-β-lactamases range between 72 and 90% (for IND-4 and IND-5, respectively). The purified enzyme exhibited N-terminal heterogeneity and a posttranslational modification consisting of the presence of a pyroglutamate residue at the N terminus. IND-6 shows a broad substrate profile, with overall higher turnover rates than IND-5 and higher activities than IND-2 and IND-5 against ceftazidime and cefepime.


Hematology ◽  
2016 ◽  
Vol 2016 (1) ◽  
pp. 293-301 ◽  
Author(s):  
Rose B. McGee ◽  
Kim E. Nichols

AbstractThe last 30 years have witnessed tremendous advances in our understanding of the cancer genetic susceptibility syndromes, including those that predispose to hematopoietic malignancies. The identification and characterization of families affected by these syndromes is enhancing our knowledge of the oncologic and nononcologic manifestations associated with predisposing germ line mutations and providing insights into the underlying disease mechanisms. Here, we provide an overview of the cancer genetic susceptibility syndromes, focusing on aspects relevant to the evaluation of patients with leukemia and lymphoma. Guidance is provided to facilitate recognition of these syndromes by hematologists/oncologists, including descriptions of the family history features, tumor genotype, and physical or developmental findings that should raise concern for an underlying cancer genetic syndrome. The clinical implications and management challenges associated with cancer susceptibility syndromes are also discussed.


2006 ◽  
Vol 80 (2) ◽  
pp. 615-622 ◽  
Author(s):  
Hanna E. Walukiewicz ◽  
John E. Johnson ◽  
Anette Schneemann

ABSTRACT We report the identification and characterization of a viral intermediate formed during infection of Drosophila cells with the nodavirus Flock House virus (FHV). We observed that even at a very low multiplicity of infection, only 70% of the input virus stayed attached to or entered the cells, while the remaining 30% of the virus eluted from cells after initial binding. The eluted FHV particles did not rebind to Drosophila cells and, thus, could no longer initiate infection by the receptor-mediated entry pathway. FHV virus-like particles with the same capsid composition as native FHV but containing cellular RNA also exhibited formation of eluted particles when incubated with the cells. A maturation cleavage-defective mutant of FHV, however, did not. Compared to naïve FHV particles, i.e., particles that had never been incubated with cells, eluted particles showed an acid-sensitive phenotype and morphological alterations. Furthermore, eluted particles had lost a fraction of the internally located capsid protein gamma. Based on these results, we hypothesize that FHV eluted particles represent an infection intermediate analogous to eluted particles observed for members of the family Picornaviridae.


2001 ◽  
Vol 357 (2) ◽  
pp. 393-398 ◽  
Author(s):  
Syuichi TAKANO ◽  
Renu WADHWA ◽  
Youji MITSUI ◽  
Sunil C. KAUL

A heat-shock protein (hsp) 70 family member mortalin/glucose-regulated protein (GRP) 75/peptide-binding protein 74 (PBP74) has been localized to various cellular compartments including mitochondria, endoplasmic reticulum and cytoplasmic vesicles. Here we describe its interactions with an endoplasmic reticulum protein GRP94, a member of the hsp90 family of GRPs. Interactions were identified, confirmed and characterized by far-Western screening, in vivo reporter and co-immunoprecipitation assays. Interacting domains of the two proteins were also characterized by mutational analysis. Such interactions of these two GRPs may be important for function of either or both and therefore provide important information for further studies.


Viruses ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 477 ◽  
Author(s):  
Vsevolod L. Popov ◽  
Robert B. Tesh ◽  
Scott C. Weaver ◽  
Nikos Vasilakis

Since the beginning of modern virology in the 1950s, transmission electron microscopy (TEM) has been an important and widely used technique for discovery, identification and characterization of new viruses. Using TEM, viruses can be differentiated by their ultrastructure: shape, size, intracellular location and for some viruses, by the ultrastructural cytopathic effects and/or specific structures forming in the host cell during their replication. Ultrastructural characteristics are usually sufficient for the identification of a virus to the family level. In this review, we summarize 25 years of experience in identification of novel viruses from the collection of the World Reference Center for Emerging Viruses and Arboviruses (WRCEVA).


Genetics ◽  
2001 ◽  
Vol 158 (1) ◽  
pp. 387-399 ◽  
Author(s):  
Mikkel H Schierup ◽  
Barbara K Mable ◽  
Philip Awadalla ◽  
Deborah Charlesworth

Abstract We study the segregation of variants of a putative self-incompatibility gene in Arabidopsis lyrata. This gene encodes a sequence that is homologous to the protein encoded by the SRK gene involved in self-incompatibility in Brassica species. We show by diallel pollinations of plants in several full-sib families that seven different sequences of the gene in A. lyrata are linked to different S-alleles, and segregation analysis in further sibships shows that four other sequences behave as allelic to these. The family data on incompatibility provide evidence for dominance classes among the S-alleles, as expected for a sporophytic SI system. We observe no division into pollen-dominant and pollen-recessive classes of alleles as has been found in Brassica, but our alleles fall into at least three dominance classes in both pollen and stigma expression. The diversity among sequences of the A. lyrata putative S-alleles is greater than among the published Brassica SRK sequences, and, unlike Brassica, the alleles do not cluster into groups with similar dominance.


2005 ◽  
Vol 187 (11) ◽  
pp. 3889-3893 ◽  
Author(s):  
Ilya V. Manukhov ◽  
Daria V. Mamaeva ◽  
Sergei M. Rastorguev ◽  
Nicolai G. Faleev ◽  
Elena A. Morozova ◽  
...  

ABSTRACT Citrobacter freundii cells produce l-methionine γ-lyase when grown on a medium containing l-methionine. The nucleotide sequence of the hybrid plasmid with a C. freundii EcoRI insert of about 3.0 kbp contained two open reading frames, consisting of 1,194 nucleotides and 1,296 nucleotides, respectively. The first one (denoted megL) encoded l-methionine γ-lyase. The enzyme was overexpressed in Escherichia coli and purified. The second frame encoded a protein belonging to the family of permeases. Regions of high sequence identity with the 3′-terminal part of the C. freundii megL gene located in the same regions of Salmonella enterica serovar Typhimurium, Shigella flexneri, E. coli, and Citrobacter rodentium genomes were found.


2007 ◽  
Vol 97 (2) ◽  
pp. 145-154 ◽  
Author(s):  
Scott Adkins ◽  
Susan E. Webb ◽  
Diann Achor ◽  
Pamela D. Roberts ◽  
Carlye A. Baker

A novel whitefly-transmitted member of the family Potyviridae was isolated from a squash plant (Cucurbita pepo) with vein yellowing symptoms in Florida. The virus, for which the name Squash vein yellowing virus (SqVYV) is proposed, has flexuous rod-shaped particles of ≈840 nm in length. The experimental host range was limited to species in the family Cucurbitaceae, with the most dramatic symptoms observed in squash and watermelon, but excluded all tested species in the families Amaranthaceae, Apocynaceae, Asteraceae, Chenopodiaceae, Fabaceae, Malvaceae, and Solanaceae. The virus was transmitted by whiteflies (Bemisia tabaci) but was not transmitted by aphids (Myzus persicae). Infection by SqVYV induced inclusion bodies visible by electron and light microscopy that were characteristic of members of the family Potyviridae. Comparison of the SqVYV coat protein gene and protein sequences with those of recognized members of the family Potyviridae indicate that it is a novel member of the genus Ipomovirus. A limited survey revealed that SqVYV also was present in watermelon plants suffering from a vine decline and fruit rot recently observed in Florida and was sufficient to induce these symptoms in greenhouse-grown watermelon, suggesting that SqVYV is the likely cause of this disease.


Sign in / Sign up

Export Citation Format

Share Document