scholarly journals Learning to Use Narrative Function Words for the Organization and Communication of Experience

2021 ◽  
Vol 12 ◽  
Author(s):  
Gregoire Pointeau ◽  
Solène Mirliaz ◽  
Anne-Laure Mealier ◽  
Peter Ford Dominey

How do people learn to talk about the causal and temporal relations between events, and the motivation behind why people do what they do? The narrative practice hypothesis of Hutto and Gallagher holds that children are exposed to narratives that provide training for understanding and expressing reasons for why people behave as they do. In this context, we have recently developed a model of narrative processing where a structured model of the developing situation (the situation model) is built up from experienced events, and enriched by sentences in a narrative that describe event meanings. The main interest is to develop a proof of concept for how narrative can be used to structure, organize and describe experience. Narrative sentences describe events, and they also define temporal and causal relations between events. These relations are specified by a class of narrative function words, including “because, before, after, first, finally.” The current research develops a proof of concept that by observing how people describe social events, a developmental robotic system can begin to acquire early knowledge of how to explain the reasons for events. We collect data from naïve subjects who use narrative function words to describe simple scenes of human-robot interaction, and then employ algorithms for extracting the statistical structure of how narrative function words link events in the situation model. By using these statistical regularities, the robot can thus learn from human experience about how to properly employ in question-answering dialogues with the human, and in generating canonical narratives for new experiences. The behavior of the system is demonstrated over several behavioral interactions, and associated narrative interaction sessions, while a more formal extended evaluation and user study will be the subject of future research. Clearly this is far removed from the power of the full blown narrative practice capability, but it provides a first step in the development of an experimental infrastructure for the study of socially situated narrative practice in human-robot interaction.

2021 ◽  
Vol 12 (1) ◽  
pp. 402-422
Author(s):  
Kheng Lee Koay ◽  
Matt Webster ◽  
Clare Dixon ◽  
Paul Gainer ◽  
Dag Syrdal ◽  
...  

Abstract When studying the use of assistive robots in home environments, and especially how such robots can be personalised to meet the needs of the resident, key concerns are issues related to behaviour verification, behaviour interference and safety. Here, personalisation refers to the teaching of new robot behaviours by both technical and non-technical end users. In this article, we consider the issue of behaviour interference caused by situations where newly taught robot behaviours may affect or be affected by existing behaviours and thus, those behaviours will not or might not ever be executed. We focus in particular on how such situations can be detected and presented to the user. We describe the human–robot behaviour teaching system that we developed as well as the formal behaviour checking methods used. The online use of behaviour checking is demonstrated, based on static analysis of behaviours during the operation of the robot, and evaluated in a user study. We conducted a proof-of-concept human–robot interaction study with an autonomous, multi-purpose robot operating within a smart home environment. Twenty participants individually taught the robot behaviours according to instructions they were given, some of which caused interference with other behaviours. A mechanism for detecting behaviour interference provided feedback to participants and suggestions on how to resolve those conflicts. We assessed the participants’ views on detected interference as reported by the behaviour teaching system. Results indicate that interference warnings given to participants during teaching provoked an understanding of the issue. We did not find a significant influence of participants’ technical background. These results highlight a promising path towards verification and validation of assistive home companion robots that allow end-user personalisation.


Author(s):  
Xinmeng Li ◽  
Mamoun Alazab ◽  
Qian Li ◽  
Keping Yu ◽  
Quanjun Yin

AbstractKnowledge graph question answering is an important technology in intelligent human–robot interaction, which aims at automatically giving answer to human natural language question with the given knowledge graph. For the multi-relation question with higher variety and complexity, the tokens of the question have different priority for the triples selection in the reasoning steps. Most existing models take the question as a whole and ignore the priority information in it. To solve this problem, we propose question-aware memory network for multi-hop question answering, named QA2MN, to update the attention on question timely in the reasoning process. In addition, we incorporate graph context information into knowledge graph embedding model to increase the ability to represent entities and relations. We use it to initialize the QA2MN model and fine-tune it in the training process. We evaluate QA2MN on PathQuestion and WorldCup2014, two representative datasets for complex multi-hop question answering. The result demonstrates that QA2MN achieves state-of-the-art Hits@1 accuracy on the two datasets, which validates the effectiveness of our model.


Author(s):  
J. Lindblom ◽  
B. Alenljung

A fundamental challenge of human interaction with socially interactive robots, compared to other interactive products, comes from them being embodied. The embodied nature of social robots questions to what degree humans can interact ‘naturally' with robots, and what impact the interaction quality has on the user experience (UX). UX is fundamentally about emotions that arise and form in humans through the use of technology in a particular situation. This chapter aims to contribute to the field of human-robot interaction (HRI) by addressing, in further detail, the role and relevance of embodied cognition for human social interaction, and consequently what role embodiment can play in HRI, especially for socially interactive robots. Furthermore, some challenges for socially embodied interaction between humans and socially interactive robots are outlined and possible directions for future research are presented. It is concluded that the body is of crucial importance in understanding emotion and cognition in general, and, in particular, for a positive user experience to emerge when interacting with socially interactive robots.


Information ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 112
Author(s):  
Marit Hagens ◽  
Serge Thill

Perfect information about an environment allows a robot to plan its actions optimally, but often requires significant investments into sensors and possibly infrastructure. In applications relevant to human–robot interaction, the environment is by definition dynamic and events close to the robot may be more relevant than distal ones. This suggests a non-trivial relationship between sensory sophistication on one hand, and task performance on the other. In this paper, we investigate this relationship in a simulated crowd navigation task. We use three different environments with unique characteristics that a crowd navigating robot might encounter and explore how the robot’s sensor range correlates with performance in the navigation task. We find diminishing returns of increased range in our particular case, suggesting that task performance and sensory sophistication might follow non-trivial relationships and that increased sophistication on the sensor side does not necessarily equal a corresponding increase in performance. Although this result is a simple proof of concept, it illustrates the benefit of exploring the consequences of different hardware designs—rather than merely algorithmic choices—in simulation first. We also find surprisingly good performance in the navigation task, including a low number of collisions with simulated human agents, using a relatively simple A*/NavMesh-based navigation strategy, which suggests that navigation strategies for robots in crowds need not always be sophisticated.


2020 ◽  
Vol 12 (6) ◽  
pp. 1213-1229
Author(s):  
Anna M. H. Abrams ◽  
Astrid M. Rosenthal-von der Pütten

AbstractThe research community of human-robot interaction relies on theories and phenomena from the social sciences in order to study and validate robotic developments in interaction. These studies mainly concerned one (human) on one (robot) interactions in the past. The present paper shifts the attention to groups and group dynamics and reviews relevant concepts from the social sciences: ingroup identification (I), cohesion (C) and entitativity (E). Ubiquitous robots will be part of larger social settings in the near future. A conceptual framework, the I–C–E framework, is proposed as a theoretical foundation for group (dynamics) research in HRI. Additionally, we present methods and possible measures for these relevant concepts and outline topics for future research.


2019 ◽  
Vol 374 (1771) ◽  
pp. 20180433 ◽  
Author(s):  
Emily C. Collins

This opinion paper discusses how human–robot interaction (HRI) methodologies can be robustly developed by drawing on insights from fields outside of HRI that explore human–other interactions. The paper presents a framework that draws parallels between HRIs, and human–human, human–animal and human–object interaction literature, by considering the morphology and use of a robot to aid the development of robust HRI methodologies. The paper then briefly presents some novel empirical work as proof of concept to exemplify how the framework can help researchers define the mechanism of effect taking place within specific HRIs. The empirical work draws on known mechanisms of effect in animal-assisted therapy, and behavioural observations of touch patterns and their relation to individual differences in caring and attachment styles, and details how this trans-disciplinary approach to HRI methodology development was used to explore how an interaction with an animal-like robot was impacting a user. In doing so, this opinion piece outlines how useful objective, psychological measures of social cognition can be for deepening our understanding of HRI, and developing richer HRI methodologies, which take us away from questions that simply ask ‘Is this a good robot?’, and closer towards questions that ask ‘What mechanism of effect is occurring here, through which effective HRI is being performed?’ This paper further proposes that in using trans-disciplinary methodologies, experimental HRI can also be used to study human social cognition in and of itself. This article is part of the theme issue ‘From social brains to social robots: applying neurocognitive insights to human–robot interaction’.


2021 ◽  
Vol 11 (5) ◽  
pp. 2188
Author(s):  
Athanasios Anagnostis ◽  
Lefteris Benos ◽  
Dimitrios Tsaopoulos ◽  
Aristotelis Tagarakis ◽  
Naoum Tsolakis ◽  
...  

The present study deals with human awareness, which is a very important aspect of human–robot interaction. This feature is particularly essential in agricultural environments, owing to the information-rich setup that they provide. The objective of this investigation was to recognize human activities associated with an envisioned synergistic task. In order to attain this goal, a data collection field experiment was designed that derived data from twenty healthy participants using five wearable sensors (embedded with tri-axial accelerometers, gyroscopes, and magnetometers) attached to them. The above task involved several sub-activities, which were carried out by agricultural workers in real field conditions, concerning load lifting and carrying. Subsequently, the obtained signals from on-body sensors were processed for noise-removal purposes and fed into a Long Short-Term Memory neural network, which is widely used in deep learning for feature recognition in time-dependent data sequences. The proposed methodology demonstrated considerable efficacy in predicting the defined sub-activities with an average accuracy of 85.6%. Moreover, the trained model properly classified the defined sub-activities in a range of 74.1–90.4% for precision and 71.0–96.9% for recall. It can be inferred that the combination of all sensors can achieve the highest accuracy in human activity recognition, as concluded from a comparative analysis for each sensor’s impact on the model’s performance. These results confirm the applicability of the proposed methodology for human awareness purposes in agricultural environments, while the dataset was made publicly available for future research.


2021 ◽  
Vol 8 ◽  
Author(s):  
Connor Esterwood ◽  
Lionel P. Robert

Robots have become vital to the delivery of health care and their personalities are often important to understanding their effectiveness as health care providers. Despite this, there is a lack of a systematic overarching understanding of personality in health care human-robot interaction. This makes it difficult to understand what we know and do not know about the impact of personality in health care human-robot interaction (H-HRI). As a result, our understanding of personality in H-HRI has not kept pace with the deployment of robots in various health care environments. To address this, the authors conducted a literature review that identified 18 studies on personality in H-HRI. This paper expands, refines, and further explicates the systematic review done in a conference proceedings [see: Esterwood (Proceedings of the 8th International Conference on Human-Agent Interaction, 2020, 87–95)]. Review results: 1) highlight major thematic research areas, 2) derive and present major conclusions from the literature, 3) identify gaps in the literature, and 4) offer guidance for future H-HRI researchers. Overall, this paper represents a reflection on the existing literature and provides an important starting point for future research on personality in H-HRI.


2017 ◽  
Vol 8 (2) ◽  
pp. 12-31 ◽  
Author(s):  
Beatrice Alenljung ◽  
Jessica Lindblom ◽  
Rebecca Andreasson ◽  
Tom Ziemke

Socially interactive robots are expected to have an increasing importance in human society. For social robots to provide long-term added value to people's lives, it is of major importance to stress the need for positive user experience (UX) of such robots. The human-centered view emphasizes various aspects that emerge in the interaction between humans and robots. However, a positive UX does not appear by itself but has to be designed for and evaluated systematically. In this paper, the focus is on the role and relevance of UX in human-robot interaction (HRI) and four trends concerning the role and relevance of UX related to socially interactive robots are identified, and three challenges related to its evaluation are also presented. It is argued that current research efforts and directions are not sufficient in HRI research, and that future research needs to further address interdisciplinary research in order to achieve long-term success of socially interactive robots.


Sign in / Sign up

Export Citation Format

Share Document