scholarly journals The Interaction Between Timescale and Pitch Contour at Pre-attentive Processing of Frequency-Modulated Sweeps

2021 ◽  
Vol 12 ◽  
Author(s):  
I-Hui Hsieh ◽  
Wan-Ting Yeh

Speech comprehension across languages depends on encoding the pitch variations in frequency-modulated (FM) sweeps at different timescales and frequency ranges. While timescale and spectral contour of FM sweeps play important roles in differentiating acoustic speech units, relatively little work has been done to understand the interaction between the two acoustic dimensions at early cortical processing. An auditory oddball paradigm was employed to examine the interaction of timescale and pitch contour at pre-attentive processing of FM sweeps. Event-related potentials to frequency sweeps that vary in linguistically relevant pitch contour (fundamental frequency F0 vs. first formant frequency F1) and timescale (local vs. global) in Mandarin Chinese were recorded. Mismatch negativities (MMNs) were elicited by all types of sweep deviants. For local timescale, FM sweeps with F0 contours yielded larger MMN amplitudes than F1 contours. A reversed MMN amplitude pattern was obtained with respect to F0/F1 contours for global timescale stimuli. An interhemispheric asymmetry of MMN topography was observed corresponding to local and global-timescale contours. Falling but not rising frequency difference waveforms sweep contours elicited right hemispheric dominance. Results showed that timescale and pitch contour interacts with each other in pre-attentive auditory processing of FM sweeps. Findings suggest that FM sweeps, a type of non-speech signal, is processed at an early stage with reference to its linguistic function. That the dynamic interaction between timescale and spectral pattern is processed during early cortical processing of non-speech frequency sweep signal may be critical to facilitate speech encoding at a later stage.

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Robert L. Folmer ◽  
Jay J. Vachhani ◽  
Amy Riggins

Background. Parkinson’s disease (PD) patients are at increased risk for central auditory processing (CAP) deficits and cognitive dysfunction. However, behavioral assessments of CAP and cognitive processing used in a previous study by our research team found few significant differences in performance between early-stage PD patients and age-matched control subjects. The objective of this study is to use auditory event-related potentials (AERPs) to compare CAP and cognitive functions in a population of PD patients with a group of age-matched control subjects. Methods. AERPs in response to tonal and speech stimuli were recorded from 35 adults who had a medical diagnosis of PD (23 males and 12 females; mean   age = 66.9 ± s . d . 11.2   years ), and 35 age-matched control subjects who did not have PD or any other neurological disorders (31 males and 4 females; mean   age = 65.4 ± s . d . 12.3   years ). Auditory stimuli included pure tones (500 and 1000 Hz) to elicit the P300 response and a dichotic digits paradigm to elicit the N200 processing negativity. Results. Compared to control subjects, PD patients exhibited significantly longer latencies of P300 and N200 components and smaller amplitude N200 components. Latency and amplitude of the N200 component were significantly correlated with participants’ age. N200 amplitude was correlated with results from the Rey Auditory Verbal Learning Test (RAVLT) of cognitive ability. Latency of the P300 and amplitude of the N200 components were significantly correlated with results from the Spatial Release From Masking (SRM) behavioral CAP assessment. Conclusions. AERP assessments used in this study appear to be sensitive indicators of CAP and cognitive deficits exhibited by early-stage PD patients. While few significant differences in performance on behavioral CAP and cognitive tests were previously observed between this population of PD patients and age-matched control subjects, N200 and P300 components recorded in the present study revealed impaired neural processing by the PD group.


Perception ◽  
2017 ◽  
Vol 46 (9) ◽  
pp. 1090-1104 ◽  
Author(s):  
Hong Zhang ◽  
Yaoru Sun ◽  
Lun Zhao

Perception of face parts on the basis of features is thought to be different from perception of whole faces, which is more based on configural information. Face context is also suggested to play an important role in face processing. To investigate how face context influences the early-stage perception of facial local parts, we used an oddball paradigm that tested perceptual stages of face processing rather than recognition. We recorded the event-related potentials (ERPs) elicited by whole faces and face parts presented in four conditions (upright-normal, upright-thatcherised, inverted-normal and inverted-thatcherised), as well as the ERPs elicited by non-face objects (whole houses and house parts) with corresponding conditions. The results showed that face context significantly affected the N170 with increased amplitudes and earlier peak latency for upright normal faces. Removing face context delayed the P1 latency but did not affect the P1 amplitude prominently for both upright and inverted normal faces. Across all conditions, neither the N170 nor the P1 was modulated by house context. The significant changes on the N170 and P1 components revealed that face context influences local part processing at the early stage of face processing and this context effect might be specific for face perception. We further suggested that perceptions of whole faces and face parts are functionally distinguished.


2010 ◽  
Vol 1 (2) ◽  
Author(s):  
Joshua Baruth ◽  
Manuel Casanova ◽  
Lonnie Sears ◽  
Estate Sokhadze

AbstractIt has been reported that individuals with autism spectrum disorder (ASD) have abnormal responses to the sensory environment. For these individuals sensory overload can impair functioning, raise physiological stress, and adversely affect social interaction. Early-stage (i.e. within 200 ms of stimulus onset) auditory processing abnormalities have been widely examined in ASD using event-related potentials (ERP), while ERP studies investigating early-stage visual processing in ASD are less frequent. We wanted to test the hypothesis of early-stage visual processing abnormalities in ASD by investigating ERPs elicited in a visual oddball task using illusory figures. Our results indicate that individuals with ASD have abnormally large cortical responses to task irrelevant stimuli over both parieto-occipital and frontal regions-of-interest (ROI) during early stages of visual processing compared to the control group. Furthermore, ASD patients showed signs of an overall disruption in stimulus discrimination, and had a significantly higher rate of motor response errors.


2021 ◽  
Vol 12 ◽  
Author(s):  
Petra Csizmadia ◽  
István Czigler ◽  
Boglárka Nagy ◽  
Zsófia Anna Gaál

We do not know enough about the cognitive background of creativity despite its significance. Using an active oddball paradigm with unambiguous and ambiguous portrait paintings as the standard stimuli, our aim was to examine whether: creativity in the figural domain influences the perception of visual stimuli; any stages of visual processing; or if healthy aging has an effect on these processes. We investigated event related potentials (ERPs) and applied ERP decoding analyses in four groups: younger less creative; younger creative; older less creative; and older creative adults. The early visual processing did not differ between creativity groups. In the later ERP stages the amplitude for the creative compared with the less creative groups was larger between 300 and 500 ms. The stimuli types were clearly distinguishable: within the 300–500 ms range the amplitude was larger for ambiguous rather than unambiguous paintings, but this difference in the traditional ERP analysis was only observable in the younger, not elderly groups, who also had this difference when using decoding analysis. Our results could not prove that visual creativity influences the early stage of perception, but showed creativity had an effect on stimulus processing in the 300–500 ms range, in indexing differences in top-down control, and having more flexible cognitive control in the younger creative group.


2020 ◽  
Vol 125 (6) ◽  
pp. 449-464
Author(s):  
Lauren Ethridge ◽  
Andrew Thaliath ◽  
Jeremy Kraff ◽  
Karan Nijhawan ◽  
Elizabeth Berry-Kravis

Abstract Auditory processing abnormalities in fragile X syndrome (FXS) may contribute to difficulties with language development, pattern identification, and contextual updating. Participants with FXS (N = 41) and controls (N = 27) underwent auditory event-related potentials during presentation of an oddball paradigm. Data was adequate for analysis for 33 participants with FXS and 27 controls (age 4–51 y, 13 females [FXS]; 4–54 y, 11 females [control]). Participants with FXS showed larger N1 and P2 amplitudes, abnormal lack of modulation of P1 and P2 amplitudes and P2 latency in response to oddball stimuli ) relative to controls: Females with FXS were more similar to controls. Participants with FXS showed a marginal speeding of the P2 latency, suggesting potentiation to oddball stimuli rather than habituation. Participants with FXS showed a heightened N1 habituation effect compared to controls. Gamma power was significantly higher for participants with FXS. Groups did not differ on mismatch negativity. Both controls and participants with FXS showed similar developmental trajectories in P1 and N1 amplitude, P2 latency, and gamma power, but not for P2 amplitude. One month retest analyses performed in 14 participants suggest strong test-retest reliability for most measures. Individuals with FXS show previously demonstrated increased response amplitude and high frequency neural activity. Despite an overall normal developmental trajectory for most measures, individuals with FXS show age-independent but gender-dependent decreases in complex processing of novel stimuli. Many markers show strong retest reliability even in children and thus are potential biomarkers for clinical trials in FXS.


Author(s):  
Justine Niemczyk ◽  
Monika Equit ◽  
Katja Rieck ◽  
Mathias Rubly ◽  
Catharina Wagner ◽  
...  

Abstract. Objective: Daytime urinary incontinence (DUI) is common in childhood. The aim of the study was to neurophysiologically analyse the central emotion processing in children with DUI. Method: In 20 children with DUI (mean age 8.1 years, 55 % male) and 20 controls (mean age 9.1 years, 75 % male) visual event-related potentials (ERPs) were recorded after presenting emotionally valent (80 neutral, 40 positive, and 40 negative) pictures from the International Affective Picture System (IAPS) as an oddball-paradigm. All children received a full organic and psychiatric assessment. Results: Children with DUI did not differ significantly from controls regarding responses to emotional pictures in the frontal, central, and parietal regions and in the time intervals 250–450 ms, 450–650 ms, and 650–850 ms after stimulus onset. The patient group had more psychological symptoms and psychiatric comorbidities than the control group. Conclusions: EEG responses to emotional stimuli are not altered in children with DUI. Central emotion processing does not play a major role in DUI. Further research, including a larger sample size, a more homogeneous patient group (regarding subtype of DUI) or brain imaging techniques, could reveal more about the central processing in DUI.


2014 ◽  
Vol 33 (10) ◽  
pp. 723-727
Author(s):  
M. Westermann ◽  
I. W. Husstedt ◽  
A. Okegwo ◽  
S. Evers

SummaryEvent-related potentials (ERP) are regarded as age dependent. However, it is not known whether this is an intrinsic property of ERP or an extrinsic factor. We designed a setting in which ERP were evoked using a modified oddball paradigm with highly differentiable and detectable target and non-target stimuli. A total of 98 probands were enrolled in this study. We evaluated the latency and amplitude of the P3 component of visually evoked ERP. The mean P3 latency was 294 ± 28 ms and was not related to age (r = –0.089; p = 0.382; Spearman-rank-correlation). The P3 amplitude was related to age in the total sample (r = –0.323; p = 0.001; Spearmanrank-correlation) but not in the probands under the age of 60 years. There were no significant differences regarding sex. Our findings suggest that ERP are not age dependent if highly differentiable and detectable stimuli are used. This should be considered when normal values of ERP are created for clinical use.


2018 ◽  
Vol 35 (3) ◽  
pp. 315-331 ◽  
Author(s):  
Paula Virtala ◽  
Minna Huotilainen ◽  
Esa Lilja ◽  
Juha Ojala ◽  
Mari Tervaniemi

Guitar distortion used in rock music modifies a chord so that new frequencies appear in its harmonic structure. A distorted dyad (power chord) has a special role in heavy metal music due to its harmonics that create a major third interval, making it similar to a major chord. We investigated how distortion affects cortical auditory processing of chords in musicians and nonmusicians. Electric guitar chords with or without distortion and with or without the interval of the major third (i.e., triads or dyads) were presented in an oddball design where one of them served as a repeating standard stimulus and others served as occasional deviants. This enabled the recording of event-related potentials (ERPs) of the electroencephalogram (EEG) related to deviance processing (the mismatch negativity MMN and the attention-related P3a component) in an ignore condition. MMN and P3a responses were elicited in most paradigms. Distorted chords in a nondistorted context only elicited early P3a responses. However, the power chord did not demonstrate a special role in the level of the ERPs. Earlier and larger MMN and P3a responses were elicited when distortion was modified compared to when only harmony (triad vs. dyad) was modified between standards and deviants. The MMN responses were largest when distortion and harmony deviated simultaneously. Musicians demonstrated larger P3a responses than nonmusicians. The results suggest mostly independent cortical auditory processing of distortion and harmony in Western individuals, and facilitated chord change processing in musicians compared to nonmusicians. While distortion has been used in heavy rock music for decades, this study is among the first ones to shed light on its cortical basis.


Sign in / Sign up

Export Citation Format

Share Document