scholarly journals Strategy Development and Feedback Processing During Complex Category Learning

2021 ◽  
Vol 12 ◽  
Author(s):  
Victoria Tilton-Bolowsky ◽  
Sofia Vallila-Rohter ◽  
Yael Arbel

In this study, 38 young adults participated in a probabilistic A/B prototype category learning task under observational and feedback-based conditions. The study compared learning success (testing accuracy) and strategy use (multi-cue vs. single feature vs. random pattern) between training conditions. The feedback-related negativity (FRN) and P3a event related potentials were measured to explore the relationships between feedback processing and strategy use under a probabilistic paradigm. A greater number of participants were found to utilize an optimal, multi-cue strategy following feedback-based training than observational training, adding to the body of research suggesting that feedback can influence learning approach. There was a significant interaction between training phase and strategy on FRN amplitude. Specifically, participants who used a strategy in which category membership was determined by a single feature (single feature strategy) exhibited a significant decrease in FRN amplitude from early training to late training, perhaps due to reduced utilization of feedback or reduced prediction error. There were no significant main or interaction effects between valence, training phase, or strategy on P3a amplitude. Findings are consistent with prior research suggesting that learners vary in their approach to learning and that training method influences learning. Findings also suggest that measures of feedback processing during probabilistic category learning may reflect changes in feedback utilization and may further illuminate differences among individual learners.

2015 ◽  
Vol 58 (4) ◽  
pp. 1195-1209 ◽  
Author(s):  
Sofia Vallila-Rohter ◽  
Swathi Kiran

Purpose Our purpose was to study strategy use during nonlinguistic category learning in aphasia. Method Twelve control participants without aphasia and 53 participants with aphasia (PWA) completed a computerized feedback-based category learning task consisting of training and testing phases. Accuracy rates of categorization in testing phases were calculated. To evaluate strategy use, strategy analyses were conducted over training and testing phases. Participant data were compared with model data that simulated complex multi-cue, single feature, and random pattern strategies. Learning success and strategy use were evaluated within the context of standardized cognitive–linguistic assessments. Results Categorization accuracy was higher among control participants than among PWA. The majority of control participants implemented suboptimal or optimal multi-cue and single-feature strategies by testing phases of the experiment. In contrast, a large subgroup of PWA implemented random patterns, or no strategy, during both training and testing phases of the experiment. Conclusions Person-to-person variability arises not only in category learning ability but also in the strategies implemented to complete category learning tasks. PWA less frequently developed effective strategies during category learning tasks than control participants. Certain PWA may have impairments of strategy development or feedback processing not captured by language and currently probed cognitive abilities.


2019 ◽  
Vol 47 (7) ◽  
pp. 1-9
Author(s):  
Li Jin ◽  
Xu Li ◽  
Jiamei Lu ◽  
Nianqu Chen ◽  
Lin Cheng ◽  
...  

We investigated emotional conflict in an educational context with an emotional body–word Stroop paradigm, examining whether the N450 (a late fronto-central phasic negative event-related potential signature) and slow potential (SP) effects could be evoked in trainee teachers. The N450 effect is characterized by topography and negative polarity of an incongruent minus congruent difference potential, and the SP effect has positive polarity (incongruent minus congruent difference potential). Positive and negative body language examples were obtained from pupils in an actual school context, and emotional words were selected. Compound stimuli were presented, each comprising a congruent or incongruent word displayed across a body image. Event-related potentials were recorded while participants judged body expression valence. Reaction times were longer and accuracies were lower for the incongruent compared to the congruent condition. The N450 component amplitude in the incongruent condition was more negative than in the congruent condition. Results showed a behavioral interference effect and an N450 effect for trainee teachers in this context, thus indicating that the body–word task was efficient in assessing emotional conflict in an educational context, and trainee teachers' perception of body expressions of students could be influenced by emotional signals. The findings further the understanding of emotional conflict in an educational context.


2017 ◽  
Author(s):  
Rahel Rabi ◽  
Marc F Joanisse ◽  
Tianshu Zhu ◽  
John Paul Minda

PreprintWhen learning rule-based categories, sufficient cognitive resources are needed to test hypotheses, maintain the currently active rule in working memory, update rules after feedback, and to select a new rule if necessary. Prior research has demonstrated that conjunctive rules are more complex than unidimensional rules and place greater demands on executive functions like working memory. In our study, event-related potentials (ERPs) were recorded while participants performed a conjunctive rule-based category learning task with trial-by-trial feedback. In line with prior research, correct categorization responses resulted in a larger stimulus-locked late positive complex compared to incorrect responses, possibly indexing the updating of rule information in memory. Incorrect trials elicited a pronounced feedback-locked P300 elicited which suggested a disconnect between perception, and the rule-based strategy. We also examined the differential processing of stimuli that were able to be correctly classified by the suboptimal single-dimensional rule (“easy” stimuli) versus those that could only be correctly classified by the optimal, conjunctive rule (“difficult” stimuli). Among strong learners, a larger, late positive slow wave emerged for difficult compared to easy stimuli, suggesting differential processing of category items even though strong learners performed well on the conjunctive category set. Overall, the findings suggest that ERP combined with computational modelling can be used to better understand the cognitive processes involved in rule-based category learning


2020 ◽  
Author(s):  
Mareike J. Hülsemann ◽  
Björn Rasch

AbstractOur thoughts, plans and intentions can influence physiological sleep, but the underlying mechanisms are unknown. According to the theoretical framework of “embodied cognition”, the semantic content of cognitive processes is represented by multimodal networks in the brain which also include body-related functions. Such multimodal representation could offer a mechanism which explains mutual influences between cognition and sleep. In the current study we tested whether sleep-related words are represented in multimodal networks by examining the effect of congruent vs. incongruent body positions on word processing during wakefulness.We experimentally manipulated the body position of 66 subjects (50 females, 16 males, 19-40 years old) between standing upright and lying down. Sleep- and activity-related words were presented around the individual speech recognition threshold to increase task difficulty. Our results show that word processing is facilitated in congruent body positions (sleep words: lying down and activity words: standing upright) compared with incongruent body positions, as indicated by a reduced N400 of the event-related potential (ERP) in the congruent condition with the lowest volume. In addition, early sensory components of the ERP (N180 and P280) were enhanced, suggesting that words were also acoustically better understood when the body position was congruent with the semantic meaning of the word. However, the difference in ERPs did not translate to differences on a behavioural level.Our results support the prediction of embodied processing of sleep- and activity-related words. Body position potentially induces a pre-activation of multimodal networks, thereby enhancing the access to the semantic concepts of words related to current the body position. The mutual link between semantic meaning and body-related function could be a key element in explaining influences of cognitive processing on sleep.


2021 ◽  
Vol 49 (3) ◽  
pp. 1-11
Author(s):  
Guan Wang ◽  
Yuting Liu ◽  
Yuan Fang

Although previous researchers have shown that attention is preferentially allocated during situations involving both threat and selfrelevant information, it is unclear which information type requires more cognitive resources. We compared the automatic processing of threat and self-relevant stimuli using the no-report oddball paradigm. Participants looked at images on a computer screen that displayed fighting with opponents or interacting with friends or customers. The body action of the person depicted was performed either toward the viewing participant or toward other people. Participants watched without making an explicit response, and event-related potentials were measured with electroencephalography. We found that threat (vs. selfrelevant) information elicited a larger P300 amplitude, and for nonthreatening events the P300 amplitude was larger for self-relevant than other-relevant stimuli. These results indicate that threat (vs. selfrelevant) information demands more cognitive resources, possibly because people prioritize survival.


2019 ◽  
Vol 14 (10) ◽  
pp. 1073-1086 ◽  
Author(s):  
Sebastian Schindler ◽  
Gregory A Miller ◽  
Johanna Kissler

Abstract In the age of virtual communication, the source of a message is often inferred rather than perceived, raising the question of how sender attributions affect content processing. We investigated this issue in an evaluative feedback scenario. Participants were told that an expert psychotherapist, a layperson or a randomly acting computer was going to give them online positive, neutral or negative personality feedback while high-density EEG was recorded. Sender attribution affected processing rapidly, even though the feedback was on average identical. Event-related potentials revealed a linear increase with attributed expertise beginning 150 ms after disclosure and most pronounced for N1, P2 and early posterior negativity components. P3 and late positive potential amplitudes were increased for both human senders and for emotionally significant (positive or negative) feedback. Strikingly, feedback from a putative expert prompted large P3 responses, even for inherently neutral content. Source analysis localized early enhancements due to attributed sender expertise in frontal and somatosensory regions and later responses in the posterior cingulate and extended visual and parietal areas, supporting involvement of mentalizing, embodied processing and socially motivated attention. These findings reveal how attributed sender expertise rapidly alters feedback processing in virtual interaction and have implications for virtual therapy and online communication.


2020 ◽  
Vol 15 (3) ◽  
pp. 285-291 ◽  
Author(s):  
Ruolei Gu ◽  
Xiang Ao ◽  
Licheng Mo ◽  
Dandan Zhang

Abstract Social anxiety has been associated with abnormalities in cognitive processing in the literature, manifesting as various cognitive biases. To what extent these biases interrupt social interactions remains largely unclear. This study used the Social Judgment Paradigm that could separate the expectation and experience stages of social feedback processing. Event-related potentials (ERPs) in these two stages were recorded to detect the effect of social anxiety that might not be reflected by behavioral data. Participants were divided into two groups according to their social anxiety level. Participants in the high social anxiety (HSA) group were more likely to predict that they would be socially rejected by peers than did their low social anxiety (LSA) counterparts (i.e. the control group). Compared to the ERP data of the LSA group, the HSA group showed: (a) a larger P1 component to social cues (peer faces) prior to social feedback presentation, possibly indicating an attention bias; (b) a difference in feedback-related negativity amplitude between unexpected social acceptance and unexpected social rejection, possibly indicating an expectancy bias; and (c) a diminished sensitivity of the P3 amplitude to social feedback valence (be accepted/be rejected), possibly indicating an experience bias. These results could help understand the cognitive mechanisms that comprise and maintain social anxiety.


2021 ◽  
pp. 174702182110479
Author(s):  
Lijuan Wang ◽  
Zhanyu Yu ◽  
Zhi Ren ◽  
Jialin Ma

The enactment effect refers to a phenomenon in which the memory performance for action phrases is enhanced by performing the described action (e.g., sharpen a pencil) compared with simply reading the action phrase. This produced effect can result in improved motor processing. This study investigated the contribution of semantic integration to the enactment effect by contrasting well-integrated phrases, such as “blow up the balloon,” with poorly integrated phrases, such as “sew the toothpick,” and analysing the N400 component of event-related potentials (ERPs). The subjects encoded action phrases with different degrees of semantic integration by either pretending to perform or reading action phrases. They then completed a phrase recognition test, while electroencephalographic signals were simultaneously recorded. The behavioural results showed that semantic integration improved memory performance under the motor encoding condition but not under the verbal encoding condition. The ERP results revealed that, regardless of whether it was an old (memorised) or new (distractor) phrase, a larger N400 component was elicited under the motor encoding condition than under the verbal encoding condition. In the motor encoding condition, poorly integrated phrases elicited a larger N400 component than well-integrated phrases; in the verbal encoding condition, this effect was not observed. The N400 effect associated with semantic processing was enhanced by semantic integration under the motor encoding condition rather than the verbal encoding condition. These results supported a deep semantic processing mechanism under the motor encoding condition, and a semantic feedback processing mechanism for the enactment effect was partially supported.


Sign in / Sign up

Export Citation Format

Share Document