scholarly journals User Evaluation of Passenger Assistance System Concepts on Public Highways

2021 ◽  
Vol 12 ◽  
Author(s):  
Sandra Ittner ◽  
Dominik Mühlbacher ◽  
Alexandra Neukum ◽  
Thomas H. Weisswange

There is ample research on assistance systems for drivers in conventional and automated vehicles. In the past, those systems were developed to increase safety but also to increase driver comfort. Since many common risks have by now been mitigated through such systems, the research and development focus expanded to also include comfort-related assistance. However, the passenger has rarely been taken into account explicitly, although it has been shown that passenger discomfort is a relevant problem. Therefore, this work investigated the potential of passenger assistance systems to reduce such discomfort. Three different passenger assistant system prototypes were tested in a driving study on public highway with N = 19 participants. The systems provided information about parameters related to the performance of the driver and one additionally provided a communicative means of influence. For two passenger assistant systems, it could be shown that they significantly reduced passenger discomfort in at least a subset of the evaluated situations. The majority of participants rated one or multiple of the assistant systems as more comfortable than a ride without assistance. The system providing information about the attentiveness of the driver was most effective in reducing discomfort and was rated as the most helpful system. The results show that explicitly considering the situation of passengers in the design of assistance systems can positively impact their comfort. This can be achieved using information from common systems targeting driver assistance available to the passenger.

2021 ◽  
Vol 13 (8) ◽  
pp. 4264
Author(s):  
Matúš Šucha ◽  
Ralf Risser ◽  
Kristýna Honzíčková

Globally, pedestrians represent 23% of all road deaths. Many solutions to protect pedestrians are proposed; in this paper, we focus on technical solutions of the ADAS–Advanced Driver Assistance Systems–type. Concerning the interaction between drivers and pedestrians, we want to have a closer look at two aspects: how to protect pedestrians with the help of vehicle technology, and how pedestrians–but also car drivers–perceive and accept such technology. The aim of the present study was to analyze and describe the experiences, needs, and preferences of pedestrians–and drivers–in connection with ADAS, or in other words, how ADAS should work in such a way that it would protect pedestrians and make walking more relaxed. Moreover, we interviewed experts in the field in order to check if, in the near future, the needs and preferences of pedestrians and drivers can be met by new generations of ADAS. A combination of different methods, specifically, an original questionnaire, on-the-spot interviewing, and expert interviews, was used to collect data. The qualitative data was analyzed using qualitative text analysis (clustering and categorization). The questionnaire for drivers was answered by a total of 70 respondents, while a total of 60 pedestrians agreed to complete questionnaires concerning pedestrian safety. Expert interviews (five interviews) were conducted by means of personal interviews, approximately one hour in duration. We conclude that systems to protect pedestrians–to avoid collisions of cars with pedestrians–are considered useful by all groups, though with somewhat different implications. With respect to the features of such systems, the considerations are very heterogeneous, and experimentation is needed in order to develop optimal systems, but a decisive argument put forward by some of the experts is that autonomous vehicles will have to be programmed extremely defensively. Given this argument, we conclude that we will need more discussion concerning typical interaction situations in order to find solutions that allow traffic to work both smoothly and safely.


2021 ◽  
Author(s):  
Sandra Ittner ◽  
Dominik Muehlbacher ◽  
Mark Vollrath ◽  
Thomas H. Weisswange

The front seat passenger is often neglected when developing support systems for cars. There exist few examples of systems that provide information or interaction possibilities specifically to those passengers. Previous research indicated that the passive role of the passenger can frequently lead to a feeling of discomfort, potentially caused by missing information and missing control with respect to the driving situation. This paper proposes a variety of prototypical passenger assistance systems that target different aspects of the cognitive processes which could cause the feeling of discomfort. In a simulator study with N = 40 participants, these systems were investigated with respect to their influence on measures of discomfort. Participants experienced different car following and braking scenarios on the highway with different time headways, with and without one of the passenger assistance systems. Based on the subjective measures, three systems were identified as particularly useful in reducing discomfort. For the best of these proposals, more than 63 % of the passengers confirmed the usefulness of the approach and reported an interest in using it in their vehicle. This demonstrates significant opportunities to improve the everyday driving experience beyond classical assistant systems by explicitly taking into account the needs of the passengers.


Information ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 233 ◽  
Author(s):  
Nadja Schömig ◽  
Katharina Wiedemann ◽  
Sebastian Hergeth ◽  
Yannick Forster ◽  
Jeffrey Muttart ◽  
...  

Within a workshop on evaluation methods for automated vehicles (AVs) at the Driving Assessment 2019 symposium in Santa Fe; New Mexico, a heuristic evaluation methodology that aims at supporting the development of human–machine interfaces (HMIs) for AVs was presented. The goal of the workshop was to bring together members of the human factors community to discuss the method and to further promote the development of HMI guidelines and assessment methods for the design of HMIs of automated driving systems (ADSs). The workshop included hands-on experience of rented series production partially automated vehicles, the application of the heuristic assessment method using a checklist, and intensive discussions about possible revisions of the checklist and the method itself. The aim of the paper is to summarize the results of the workshop, which will be used to further improve the checklist method and make the process available to the scientific community. The participants all had previous experience in HMI design of driver assistance systems, as well as development and evaluation methods. They brought valuable ideas into the discussion with regard to the overall value of the tool against the background of the intended application, concrete improvements of the checklist (e.g., categorization of items; checklist items that are currently perceived as missing or redundant in the checklist), when in the design process the tool should be applied, and improvements for the usability of the checklist.


2010 ◽  
Vol 22 (6) ◽  
pp. 737-744 ◽  
Author(s):  
Shin Kato ◽  
◽  
Naohisa Hashimoto ◽  
Takeki Ogitsu ◽  
Sadayuki Tsugawa ◽  
...  

We propose some driver assistance systems with communication to traffic lights. It proposes the driver assistance system that uses information from the traffic lights with the state of the signal and time of the cycle. The demand traffic lights systems are also proposed. In addition, a consideration of the configuration and the construction of the experiment systems, and some field experiments for driver assistance are described.


2015 ◽  
Vol 63 (3) ◽  
Author(s):  
Jan Becker ◽  
Sören Kammel ◽  
Oliver Pink ◽  
Michael Fausten

AbstractAdvanced driver assistance systems already help drivers reach their destinations safely and more comfortably. Future systems will evolve from driver assistance over highly automated vehicles to fully automated driving. With an increasing level of automation, automated functions will reduce the driver's burden more and more, thereby creating space for productivity, communication or entertainment while driving. In this article we outline our roadmap for future automated vehicles, assess the key challenges for introduction and give an overview of the major algorithmic components.


Author(s):  
Alex David S ◽  
K. Antony Kumar ◽  
S. Ravi Kumar

Nowadays thousands of drivers and passengers were losing their lives every year on road accident, due to deadly crashes between more than one vehicle. There are number of many research focuses were dedicated to the development of intellectual driver assistance systems and autonomous vehicles over the past decade, which reduces the danger by monitoring the on-road environment. In particular, researchers attracted towards the on-road detection of vehicles in recent years. Different parameters have been analyzed in this paper which includes camera placement and the various applications of monocular vehicle detection, common features and common classification methods, motion- based approaches and nighttime vehicle detection and monocular pose estimation. Previous works on the vehicle detection listed based on camera poisons, feature based detection and motion based detection works and night time detection.


Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4761 ◽  
Author(s):  
Shabir Ahmad ◽  
Sehrish Malik ◽  
Dong-Hwan Park ◽  
DoHyeun Kim

Electric-vehicle technology is an emerging area offering several benefits such as economy due to low running costs. Electric vehicles can also help to significantly reduce CO 2 emission, which is a vital factor for environmental pollution. Modern vehicles are equipped with driver-assistance systems that facilitate drivers by offloading some of the tasks a driver does while driving. Human beings are prone to errors. Therefore, accidents and fatalities can happen if the driver fails to perform a particular task within the deadline. In electric vehicles, the focus has always been to optimize the power and battery life, and thus, any additional hardware can affect their battery life significantly. In this paper, the design of driver-assistance systems has been introduced to automate and assist in some of the vital tasks, such as a braking system, in an optimized manner. We revamp the idea of the traditional driver-assistance system and propose a generic lightweight system based on the leading factors and their impact on accidents. We model tasks for these factors and simulate a low-cost driver-assistance system in a real-time context, where these scenarios are investigated and tasks schedulability is formally proved before deploying them in electric vehicles. The proposed driver-assistance system offers many advantages. It decreases the risk of accidents and monitors the safety of driving. If, at some point, the risk index is above a certain threshold, an automated control algorithm is triggered to reduce it by activating different actuators. At the same time, it is lightweight and does not require any dedicated hardware, which in turn has a significant advantage in terms of battery life. Results show that the proposed system not only is accurate but also has a very negligible effect on energy consumption and battery life.


Author(s):  
Victor L. Knoop ◽  
Meng Wang ◽  
Isabel Wilmink ◽  
D. Marika Hoedemaeker ◽  
Mark Maaskant ◽  
...  

An increasing amount of vehicles are equipped with driver assistance systems; many of the vehicles currently on the market can be optionally equipped with adaptive cruise control and lane centering systems. Using both systems at the same time brings the vehicle to SAE level-2 automation . This means a driver does not need to perform longitudinal and lateral operational driving, although the driver should be ready to intervene at any time. While this can provide comfort, the interaction between vehicles operated by these systems might cause some undesired effects. This becomes particularly relevant with increasing market penetration rates. This paper describes an experiment with seven SAE level-2 vehicles driven as a platoon on public roads for a trip of almost 500 km. The paper discusses how the experiment was organized and the equipment of the vehicles. It also discusses the interaction of the platoon in traffic, as well as, in basic terms, the interaction between the automated vehicles. The experiences can be useful for other studies setting up field tests. The conclusion from this platoon test is: intentionally creating platoons on public roads is difficult in busy traffic conditions. Moreover, interactions between the vehicles in the platoon show that the current SAE level-2 systems are not suitable for driving as platoons of more than typically three to four vehicles, because of instabilities in the car-following behavior.


Sign in / Sign up

Export Citation Format

Share Document