scholarly journals Inferior Frontal Gyrus Volume Loss Distinguishes Between Autism and (Comorbid) Attention-Deficit/Hyperactivity Disorder—A FreeSurfer Analysis in Children

2018 ◽  
Vol 9 ◽  
Author(s):  
Kathrin Nickel ◽  
Ludger Tebartz van Elst ◽  
Jacek Manko ◽  
Josef Unterrainer ◽  
Reinhold Rauh ◽  
...  
2013 ◽  
Vol 44 (4) ◽  
pp. 869-880 ◽  
Author(s):  
H. McCarthy ◽  
N. Skokauskas ◽  
T. Frodl

BackgroundThe neurobiological underpinnings of attention deficit hyperactivity disorder (ADHD) are inconclusive. Activation abnormalities across brain regions in ADHD compared with healthy controls highlighted in task-based functional magnetic resonance imaging (fMRI) studies are heterogeneous. To identify a consistent pattern of neural dysfunction in ADHD, a meta-analysis of fMRI studies using Go/no-go, Stop and N-back tasks was undertaken.MethodSeveral databases were searched using the key words: ‘ADHD and fMRI’ and ‘ADHD and fMRI task’. In all, 20 studies met inclusion criteria comprising 334 patients with ADHD and 372 healthy controls and were split into N-back, Stop task and Go/no-go case–control groups. Using Signed Differential Mapping each batch was meta-analysed individually and meta-regression analyses were used to examine the effects of exposure to methylphenidate (MPH), length of MPH wash-out period, ADHD subtype, age and intelligence quotient (IQ) differences upon neural dysfunction in ADHD.ResultsAcross all tasks less activity in frontal lobe regions compared with controls was detected. Less exposure to treatment and lengthier wash-out times resulted in less left medial frontal cortex activation in N-back and Go/no-go studies. Higher percentage of combined-type ADHD resulted in less superior and inferior frontal gyrus activation. Different IQ scores between groups were linked to reduced right caudate activity in ADHD.ConclusionsConsistent frontal deficits imply homogeneous cognitive strategies involved in ADHD behavioural control. Our findings suggest a link between fMRI results and the potentially normalizing effect of treatment and signify a need for segregated examination and contrast of differences in sample characteristics in future studies.


Author(s):  
Luke J. Norman ◽  
Gustavo Sudre ◽  
Marine Bouyssi-Kobar ◽  
Wendy Sharp ◽  
Philip Shaw

AbstractPrevious cross-sectional work has demonstrated resting-state connectivity abnormalities in children and adolescents with attention/deficit hyperactivity disorder (ADHD) relative to typically developing controls. However, it is unclear to what extent these neural abnormalities confer risk for later symptoms of the disorder, or represent the downstream effects of symptoms on functional connectivity. Here, we studied 167 children and adolescents (mean age at baseline = 10.74 years (SD = 2.54); mean age at follow-up = 13.3 years (SD = 2.48); 56 females) with varying levels of ADHD symptoms, all of whom underwent resting-state functional magnetic resonance imaging and ADHD symptom assessments on two occasions during development. Resting-state functional connectivity was quantified using eigenvector centrality mapping. Using voxelwise cross-lag modeling, we found that less connectivity at baseline within right inferior frontal gyrus was associated with more follow-up symptoms of inattention (significant at an uncorrected cluster-forming threshold of p ≤ 0.001 and a cluster-level familywise error corrected threshold of p < 0.05). Findings suggest that previously reported cross-sectional abnormalities in functional connectivity within inferior frontal gyrus in patients with ADHD may represent a longitudinal risk factor for the disorder, in line with efforts to target this region with novel therapeutic methods.


2014 ◽  
Vol 44 (12) ◽  
pp. 2661-2671 ◽  
Author(s):  
L.-Y. Fan ◽  
S. S.-F. Gau ◽  
T.-L. Chou

BackgroundDespite evidence of inhibitory control and visual processing impairment in attention deficit hyperactivity disorder (ADHD), knowledge about its corresponding alterations in the brain is still evolving. The current study used counting Stroop functional MRI and the Cambridge Neuropsychological Test Automated Battery (CANTAB) to investigate if brain activation of inhibitory control and visual processing would differ in youths with ADHD relative to neurotypical youths.MethodWe assessed 25 youths with ADHD [mean age 10.9 (s.d. = 2.2) years] and 23 age-, gender- and IQ-matched neurotypical youths [mean age 11.2 (s.d. = 2.9) years]. The participants were assessed by using the Wechsler Intelligence Scale for Children, third edition, and two tests from the CANTAB: rapid visual information processing (RVP) and pattern recognition memory (PRM) outside the scanner.ResultsYouths with ADHD showed more activation than neurotypical youths in the right inferior frontal gyrus [Brodmann area (BA) 45] and anterior cingulate cortex, which were correlated with poorer performance on the RVP test in the CANTAB. In contrast, youths with ADHD showed less activation than neurotypical youths in the left superior parietal lobule (BA 5/7), which was correlated with the percentage of correct responses on the PRM test in the CANTAB.ConclusionsOur findings suggest that youths with ADHD might need more inhibitory control to suppress interference between number and meaning and may involve less visual processing to process the numbers in the counting Stroop task than neurotypical youths.


2022 ◽  
Author(s):  
Gido H. Schoenmacker ◽  
Kuaikuai Duan ◽  
Kelly Rootes-Murdy ◽  
Wenhao Jiang ◽  
Pieter J. Hoekstra ◽  
...  

Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder and is associated with structural grey matter differences in the brain. We investigated the genetic background of some of these brain differences in a sample of 899 adults and adolescents consisting of individuals with ADHD and healthy controls. Previous work in an overlapping sample identified three ADHD-related grey matter brain networks located in areas of the superior, middle, and inferior frontal gyrus as well as the cerebellar tonsil and culmen. We associated these brain networks with protein coding genes using a statistical stability selection approach. We identified ten genes, the most promising of which were NR3C2, TRHDE, SCFD1, GNAO1, and UNC5D. These genes are expressed in brain and linked to neuropsychiatric disorders including ADHD. With our results we aid in the growing understanding of the aetiology of ADHD from genes to brain to behaviour.


2003 ◽  
Vol 32 (2) ◽  
pp. 241-262 ◽  
Author(s):  
Lisa Marie Angello ◽  
Robert J. Volpe ◽  
James C. DiPerna ◽  
Sammi P. Gureasko-Moore ◽  
David P. Gureasko-Moore ◽  
...  

2015 ◽  
Vol 29 (1) ◽  
pp. 26-32 ◽  
Author(s):  
Ching-Wen Huang ◽  
Chung-Ju Huang ◽  
Chiao-Ling Hung ◽  
Chia-Hao Shih ◽  
Tsung-Min Hung

Children with attention deficit hyperactivity disorder (ADHD) are characterized by a deviant pattern of brain oscillations during resting state, particularly elevated theta power and increased theta/alpha and theta/beta ratios that are related to cognitive functioning. Physical fitness has been found beneficial to cognitive performance in a wide age population. The purpose of the present study was to investigate the relationship between physical fitness and resting-state electroencephalographic (EEG) oscillations in children with ADHD. EEG was recorded during eyes-open resting for 28 children (23 boys and 5 girls, 8.66 ± 1.10 years) with ADHD, and a battery of physical fitness assessments including flexibility, muscular endurance, power, and agility tests were administered. The results indicated that ADHD children with higher power fitness exhibited a smaller theta/alpha ratio than those with lower power fitness. These findings suggest that power fitness may be associated with improved attentional self-control in children with ADHD.


Sign in / Sign up

Export Citation Format

Share Document