scholarly journals Electroacupuncture Alleviates Cerebral Ischemia/Reperfusion Injury in Rats by Histone H4 Lysine 16 Acetylation-Mediated Autophagy

2020 ◽  
Vol 11 ◽  
Author(s):  
Shu-Ying Xu ◽  
He-Qun Lv ◽  
Wen-Qian Li ◽  
Hao Hong ◽  
Yong-Jun Peng ◽  
...  

Background: Electroacupuncture (EA) treatment in ischemic stroke has been highlighted recently; however, the specific mechanism is still elusive. Autophagy is considered a new target for cerebral ischemia/reperfusion (I/R), but whether it plays a role of protecting or causing rapid cell apoptosis remains unclear. Studies have reported that the reduction in lysine 16 of histone H4 acetylation coheres with autophagy induction. The primary purpose of the study was to explore whether EA could alleviate I/R via autophagy-mediated histone H4 lysine 16 acetylation in the middle cerebral artery occlusion (MCAO) rat model.Methods: One hundred and twenty male Sprague-Dawley rats were divided into five groups: control group, MCAO group, MCAO+EA group, MCAO+EA+hMOF siRNA group, and MCAO+EA+Sirt1 inhibitor group. EA was applied to “Baihui” (Du20) and “Renzhong” (Du26) at 5 min after modeling and 16 h after the first EA intervention. The structure and molecular markers of the rat brain were evaluated.Results: EA significantly alleviated I/R injury by upregulating the expressions of Sirt1, Beclin1, and LC3-II and downregulating the expressions of hMOF and H4K16ac. In contrast, the Sirt1 inhibitor lowered the increase in Sirt1, Beclin1, and LC3-II and enhanced the level of hMOF and H4K16ac expressions associated with EA treatment. Besides, ChIP assay revealed that the binding of H4K16ac in the Beclin1 promoter region of the autophagy target gene was significantly raised in the MCAO+EA group and MCAO+EA+hMOF siRNA group.Conclusions: EA treatment inhibited the H4K16ac process, facilitated autophagy, and alleviated I/R injury. These findings suggested that regulating histone H4 lysine 16 acetylation-mediated autophagy may be a key mechanism of EA at Du20 and Du26 to treat I/R.

2011 ◽  
Vol 26 (suppl 1) ◽  
pp. 14-20 ◽  
Author(s):  
Vilma Leite de Sousa Pires ◽  
José Reniclebson Feitosa de Souza ◽  
Sergio Botelho Guimarães ◽  
Antonio Ribeiro da Silva Filho ◽  
José Huygens Parente Garcia ◽  
...  

PURPOSE: To investigate the effect of L-alanyl-L-glutamine (L-Ala-Gln) preconditioning in an acute cerebral ischemia/reperfusion (I/R) model in gerbils. METHODS: Thirty-six Mongolian gerbils (Meriones unguiculatus), (60-100g), were randomized in 2 groups (n=18) and preconditioned with saline 2.0 ml (Group-S) or 0.75g/Kg of L-Ala-Gln, (Group-G) administered into the femoral vein 30 minutes prior to I/R. Each group was divided into three subgroups (n=6). Anesthetized animals (urethane, 1.5g/Kg, i.p.) were submitted to bilateral occlusion of common carotid arteries during 15 minutes. Samples (brain tissue and arterial blood) were collected at the end of ischemia (T0) and after 30 (T30) and 60 minutes (T60) for glucose, lactate, myeloperoxidase (MPO), thiobarbituric acid reactive substances (TBARS), glutathione (GSH) assays and histopathological evaluation. RESULTS: Glucose and lactate levels were not different in studied groups. However glycemia increased significantly in saline groups at the end of the reperfusion period. TBARS levels were significantly different, comparing treated (Group-G) and control group after 30 minutes of reperfusion (p<0.05) in cerebral tissue. Pretreatment with L-Ala-Gln promoted a significant increase in cerebral GSH contents in Group-G at T30 (p<0.001) time-point compared with Group-S. At T30 and T60, increased levels of GSH occurred in both time-points. There were no group differences regarding MPO levels. Pyknosis, presence of red neurons and intracellular edema were significantly smaller in Group-G. CONCLUSION: Preconditioning with L-Ala-Gln in gerbils submitted to cerebral ischemia/reperfusion reduces oxidative stress and degeneration of the nucleus (pyknosis) and cell death (red neurons) in the cerebral tissue.


2021 ◽  
Vol 12 ◽  
Author(s):  
Li Yu ◽  
Yangyang Zhang ◽  
Xixi Zhao ◽  
Haitong Wan ◽  
Yu He ◽  
...  

Guhong injection (GHI) is a drug for ischemic stroke created by combining safflower, a traditional Chinese medicine, and aceglutamide, a Western medicine. In this study, we investigated the curative effect of GHI on cerebral ischemia–reperfusion (I/R) injury via the PKC/HIF-1α pathway in rats. Adult male Sprague Dawley rats were randomly divided into seven groups: sham-operated, middle cerebral artery occlusion (MCAO), GHI, nimodipine injection (NMDP), MCAO + LY317615 (PKC inhibitor), GHI + LY317615, and NMDP + LY317615. After establishing an MCAO rat model, we performed neurological deficit testing, 2,3,5-triphenyltetrazolium chloride staining, hematoxylin and eosin (HE) staining, enzyme-linked immunosorbent assay, Western blotting, and q-PCR to detect the brain damage in rats. Compared with the MCAO group, the GHI and GHI + LY317615 group showed neurological damage amelioration as well as decreases in serum hypoxia-inducible factor-1α (HIF-1α), protein kinase C (PKC), and erythropoietin levels; brain HIF-1α and inducible nitric oxide synthase protein expression; and brain HIF-1α and NOX-4 mRNA expression. These effects were similar to those in the positive control groups NMDP and NMDP + LY317615. Thus, our results confirmed GHI can ameliorate cerebral I/R injury in MCAO rats possibly via the PKC/HIF-1α pathway.


2020 ◽  
Vol 98 (12) ◽  
pp. 855-860
Author(s):  
Yaping Zhang ◽  
Nan Ding ◽  
Hanlu Yi ◽  
Yudong Zhao ◽  
Zankai Ye ◽  
...  

The objective was to identify the differential expressed miRNA during cerebral ischemia–reperfusion injury (CIRI) process, thereby assisting in elucidating the mechanism of CIRI development and providing a potential target for CIRI prevention and treatment. Six mice were randomly assigned to two groups: control group and CIRI model group. A global cerebral IR model by four-vessel occlusion was prepared among the CIRI model group. Brain tissues were collected 48 h after reperfusion. Total RNA was extracted for each sample. miRNA microarrays were employed to detect the differentially expressed miRNA between the CIRI group and the control group. One differentially expressed miRNA was selected for verification by PCR. Compared with the control group, 69 miRNAs were significantly differential expressed in samples of the CIRI group, among which 50 miRNAs were upregulated and 19 miRNAs were downregulated. The real-time qPCR results indicated that the results of the miRNA microarray were reliable. A number of miRNAs were significantly regulated in the CIRI model, which suggested that miRNA was closely associated with the pathological alterations after ischemia. These identified miRNAs may provide directions and targets for the future pathological research of CIRI.


Dose-Response ◽  
2020 ◽  
Vol 18 (3) ◽  
pp. 155932582094619
Author(s):  
Liru Li ◽  
Jie Huang

Although rapamycin can attenuate cerebral ischemia/reperfusion (I/R) injury, the potential roles of rapamycin on cerebral I/R injury remain largely controversial. The present work aims to evaluate underlying molecular mechanisms of rapamycin pretreatment on I/R injury. In total, 34 Sprague-Dawley rats were randomly grouped to 3 groups: sham group (n = 2), vehicle group (n = 16), and rapamycin-pretreatment group (n = 16). Before the focal cerebral ischemia was induced, those rats in the pretreatment group were intraperitoneally injected rapamycin (1 mg/kg body) for 20 hours, while rats in the vehicle group received same-volume saline. Then, rats in these 2 groups received focal cerebral ischemia for 3 and 6 hours, respectively (n = 8 in each group), which was followed by the application of reperfusion for 4, 24, 72 hours, and 1 week (n = 2 in each group). The results showed that the rapamycin pretreatment improved the memory functions of rats after I/R injury, which was evaluated using a Y-maze test. Rapamycin pretreatment significantly reduced the size of triphenyltetrazolium chloride infarction and decreased the expression of I/R injury markers. Moreover, the expression of LC-3 and NFκB was also significantly reduced after rapamycin pretreatment. Taken together, rapamycin pretreatment may alleviate cerebral I/R injury partly through inhibiting autophagic activities and NFκB pathways in rats.


2019 ◽  
Vol 22 (04) ◽  
pp. 122-130
Author(s):  
Rihab H Al-Mudhaffer ◽  
Laith M Abbas Al-Huseini ◽  
Saif M Hassan ◽  
Najah R Hadi

2020 ◽  
Vol 23 (3) ◽  
pp. 214-224 ◽  
Author(s):  
Esra Cakir ◽  
Ufuk Cakir ◽  
Cuneyt Tayman ◽  
Tugba Taskin Turkmenoglu ◽  
Ataman Gonel ◽  
...  

Background: Activated inflammation and oxidant stress during cerebral ischemia reperfusion injury (IRI) lead to brain damage. Astaxanthin (ASX) is a type of carotenoid with a strong antioxidant effect. Objective: The aim of this study was to investigate the role of ASX on brain IRI. Methods: A total of 42 adult male Sprague-Dawley rats were divided into 3 groups as control (n=14) group, IRI (n=14) group and IRI + ASX (n=14) group. Cerebral ischemia was instituted by occluding middle cerebral artery for 120 minutes and subsequently, reperfusion was performed for 48 hours. Oxidant parameter levels and protein degradation products were evaluated. Hippocampal and cortex cell apoptosis, neuronal cell count, neurological deficit score were evaluated. Results: In the IRI group, oxidant parameter levels and protein degradation products in the tissue were increased compared to control group. However, these values were significantly decreased in the IRI + ASX group (p<0.05). There was a significant decrease in hippocampal and cortex cell apoptosis and a significant increase in the number of neuronal cells in the IRI + ASX group compared to the IRI group alone (p<0.05). The neurological deficit score which was significantly lower in the IRI group compared to the control group was found to be significantly improved in the IRI + ASX group (p<0.05). Conclusion: Astaxanthin protects the brain from oxidative damage and reduces neuronal deficits due to IRI injury.


Sign in / Sign up

Export Citation Format

Share Document