scholarly journals Psychosocial Intervention for Youth With High Externalizing Behaviors and Aggression Is Associated With Improvement in Impulsivity and Brain Gray Matter Volume Changes

2022 ◽  
Vol 12 ◽  
Author(s):  
Nathan J. Kolla ◽  
Areti Smaragdi ◽  
George Gainham ◽  
Karolina A. Karas ◽  
Colin Hawco ◽  
...  

Background: Stop, Now And Plan (SNAP) is a cognitive behavioral-based psychosocial intervention that has a strong evidence base for treating youth with high aggression and externalizing behaviors, many of whom have disruptive behavior disorders. In a pre-post design, we tested whether SNAP could improve externalizing behaviors, assessed by the parent-rated Child Behavior Checklist (CBCL) and also improve behavioral measures of impulsivity in children with high aggression and impulsivity. We then investigated whether any improvement in externalizing behavior or impulsivity was associated with gray matter volume (GMV) changes assessed using structural magnetic resonance imaging (sMRI). We also recruited typically developing youth who were assessed twice without undergoing the SNAP intervention.Methods: Ten children who were participating in SNAP treatment completed the entire study protocol. CBCL measures, behavioral measures of impulsivity, and sMRI scanning was conducted pre-SNAP and then 13 weeks later post-SNAP. Twelve healthy controls also completed the study; they were rated on the CBCL, performed the same behavioral measure of impulsivity, and underwent sMRI twice, separated by 13 weeks. They did not receive the SNAP intervention.Result: At baseline, SNAP participants had higher CBCL scores and performed worse on the impulsivity task compared with the healthy controls. At the second visit, SNAP participants still had higher scores on the CBCL compared with normally-developing controls, but their performance on the impulsivity task had improved to the point where their results were indistinguishable from the healthy controls. Structural magnetic resonance imaging in the SNAP participants further revealed that improvements in impulsivity were associated with GMV changes in the frontotemporal region.Conclusion: These results suggest that SNAP led to improvement in behavioral measures of impulsivity in a cohort of boys with high externalizing behavior. Improvement in impulsivity was also associated with increased GMV changes. The mechanism behind these brain changes is unknown but could relate to cognitive behavioral therapy and contingency management interventions, important components of SNAP, that target frontotemporal brain regions. Clinically, this study offers new evidence for the potential targeting of brain regions by non-invasive modalities, such as repetitive transcranial magnetic stimulation, to improve externalizing behavior and impulsivity.

2021 ◽  
Vol 12 ◽  
Author(s):  
Martin Jáni ◽  
Zora Kikinis ◽  
Jan Lošák ◽  
Ofer Pasternak ◽  
Filip Szczepankiewicz ◽  
...  

Objectives: We assessed the relationship between emotional awareness (e.g., the ability to identify and differentiate our own feelings and feelings of others) and regional brain volumes in healthy and in schizophrenia groups.Methods: Magnetic resonance images of 29 subjects with schizophrenia and 33 matched healthy controls were acquired. Brain gray matter was parcellated using FreeSurfer and 28 regions of interest associated with emotional awareness were analyzed. All participants were assessed using the Levels of Emotional Awareness Scale (LEAS) of Self and of Other. LEAS scores were correlated with gray matter volume for each hemisphere on the 14 brain regions of the emotional awareness network.Results: Individuals with schizophrenia showed decreased emotional awareness on both LEAS Self and LEAS Other compared to healthy controls. There were no statistically significant between-group differences in gray matter volumes of the emotional awareness network. The performance on LEAS Other correlated negatively with right precuneus gray matter volume only in the schizophrenia group.Conclusion: Our findings suggest a relationship between gray matter volume of the right precuneus and deficits in understanding of emotional states of others in schizophrenia.


2019 ◽  
Vol 61 (4) ◽  
pp. 487-495
Author(s):  
Hyeong Cheol Moon ◽  
Byeong Ho Oh ◽  
Chaejoon Cheong ◽  
Won Seop Kim ◽  
Kyung Soo Min ◽  
...  

Background Chronic repeated transient ischemic changes are one of the common symptoms of moyamoya disease that could affect cortical and subcortical atrophy. Purpose We aimed to assess the cortical gray matter volume and thickness, white matter subcortical volume, and clinical characteristics using 7-T magnetic resonance imaging (MRI) and MR angiography (MRA). Material and Methods In this case-control study, whole-brain parcellation of gray matter and subcortical volumes were manually assessed in nine patients with moyamoya disease (18 hemispheres; median age = 34 years; age range = 10–60 years) and nine healthy controls (18 hemispheres; median age = 29 years; age range = 20–62 years) matched for age and sex, who underwent both 7-T MRI and MRA. The volumes were measured using high-resolution image (<1 mm) processing based on the Desikan-Killiany-Tourville (DKT) atlas, via an automated segmentation method (FreeSurfer version 6.0). Results The gray matter volume of the left precentral cortex and the white matter volume of the subcortical cerebellum were lower in both hemispheres in the patients with moyamoya disease compared to the healthy controls. Conclusion Gray matter atrophy in the precentral cortex and cerebellar white matter were detected in this 7-T MRI volumetric analysis study of patients with moyamoya disease who experienced repeated transient ischemic changes. Cortical atrophy in precentral cortex and cerebellum could explain the transient motor weakness in patients with moyamoya disease, as one of the early findings was that patients with moyamoya disease do not have detectable infarction changes on conventional MRI images.


Pain Medicine ◽  
2020 ◽  
Vol 21 (11) ◽  
pp. 2997-3011
Author(s):  
Álvaro Planchuelo-Gómez ◽  
David García-Azorín ◽  
Ángel L Guerrero ◽  
Margarita Rodríguez ◽  
Santiago Aja-Fernández ◽  
...  

Abstract Objective This study evaluates different parameters describing the gray matter structure to analyze differences between healthy controls, patients with episodic migraine, and patients with chronic migraine. Design Cohort study. Setting Spanish community. Subjects Fifty-two healthy controls, 57 episodic migraine patients, and 57 chronic migraine patients were included in the study and underwent T1-weighted magnetic resonance imaging acquisition. Methods Eighty-four cortical and subcortical gray matter regions were extracted, and gray matter volume, cortical curvature, thickness, and surface area values were computed (where applicable). Correlation analysis between clinical features and structural parameters was performed. Results Statistically significant differences were found between all three groups, generally consisting of increases in cortical curvature and decreases in gray matter volume, cortical thickness, and surface area in migraineurs with respect to healthy controls. Furthermore, differences were also found between chronic and episodic migraine. Significant correlations were found between duration of migraine history and several structural parameters. Conclusions Migraine is associated with structural alterations in widespread gray matter regions of the brain. Moreover, the results suggest that the pattern of differences between healthy controls and episodic migraine patients is qualitatively different from that occurring between episodic and chronic migraine patients.


2021 ◽  
pp. 089198872098891
Author(s):  
Regina Eun Young Kim ◽  
Robert Douglas Abbott ◽  
Soriul Kim ◽  
Robert Joseph Thomas ◽  
Chang-Ho Yun ◽  
...  

This study aimed to evaluate the effect of sleep duration on brain structures in the presence versus absence of sleep apnea in middle-aged and older individuals. The study investigated a population-based sample of 2,560 individuals, aged 49-80 years. The presence of sleep apnea and self-reported sleep duration were examined in relation to gray matter volume (GMV) in total and lobar brain regions. We identified ranges of sleep duration associated with maximal GMV using quadratic regression and bootstrap sampling. A significant quadratic association between sleep duration and GMV was observed in total and lobar brain regions of men with sleep apnea. In the fully adjusted model, optimal sleep durations associated with peak GMV between brain regions ranged from 6.7 to 7.0 hours. Shorter and longer sleep durations were associated with lower GMV in total and 4 sub-regions of the brain in men with sleep apnea.


Neurology ◽  
2021 ◽  
pp. 10.1212/WNL.0000000000012869
Author(s):  
Raffaello Bonacchi ◽  
Alessandro Meani ◽  
Elisabetta Pagani ◽  
Olga Marchesi ◽  
Andrea Falini ◽  
...  

Objective:To investigate whether age at onset influences brain gray matter volume (GMV) and white matter (WM) microstructural abnormalities in adult multiple sclerosis (MS) patients, given its influence on clinical phenotype and disease course.Method:In this hypothesis-driven cross-sectional study, we enrolled 67 pediatric-onset MS (POMS) patients and 143 sex- and disease duration (DD)-matched randomly-selected adult-onset MS (AOMS) patients, together with 208 healthy controls. All subjects underwent neurological evaluation and 3T MRI acquisition. MRI variables were standardized based on healthy controls, to remove effects of age and sex. Associations with DD in POMS and AOMS patients were studied with linear models. Time to reach clinical and MRI milestones was assessed with product-limit approach.Results:At DD=1 year, GMV and WM fractional anisotropy (FA) were abnormal in AOMS but not in POMS patients. Significant interaction of age at onset (POMS vs AOMS) into the association with DD was found for GMV and WM FA. The crossing point of regression lines in POMS and AOMS patients was at 20 years of DD for GMV and 14 for WM FA. For POMS and AOMS patients, median DD was 29 and 19 years to reach Expanded Disability Status Scale=3 (p<0.001), 31 and 26 years to reach abnormal Paced Auditory Serial Addition Task-3 (p=0.01), 24 and 18 years to reach abnormal GMV (p=0.04), and 19 and 17 years to reach abnormal WM FA (p=0.36).Conclusions:Younger patients are initially resilient to MS-related damage. Then, compensatory mechanisms start failing with loss of WM integrity, followed by GM atrophy and finally disability.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Elizabeth Farrow ◽  
Andreas G. Chiocchetti ◽  
Jack C. Rogers ◽  
Ruth Pauli ◽  
Nora M. Raschle ◽  
...  

AbstractConduct disorder (CD), a psychiatric disorder characterized by a repetitive pattern of antisocial behaviors, results from a complex interplay between genetic and environmental factors. The clinical presentation of CD varies both according to the individual’s sex and level of callous-unemotional (CU) traits, but it remains unclear how genetic and environmental factors interact at the molecular level to produce these differences. Emerging evidence in males implicates methylation of genes associated with socio-affective processes. Here, we combined an epigenome-wide association study with structural neuroimaging in 51 females with CD and 59 typically developing (TD) females to examine DNA methylation in relation to CD, CU traits, and gray matter volume (GMV). We demonstrate an inverse pattern of correlation between CU traits and methylation of a chromosome 1 region in CD females (positive) as compared to TD females (negative). The identified region spans exon 1 of the SLC25A24 gene, central to energy metabolism due to its role in mitochondrial function. Increased SLC25A24 methylation was also related to lower GMV in multiple brain regions in the overall cohort. These included the superior frontal gyrus, prefrontal cortex, and supramarginal gyrus, secondary visual cortex and ventral posterior cingulate cortex, which are regions that have previously been implicated in CD and CU traits. While our findings are preliminary and need to be replicated in larger samples, they provide novel evidence that CU traits in females are associated with methylation levels in a fundamentally different way in CD and TD, which in turn may relate to observable variations in GMV across the brain.


2020 ◽  
Vol 63 (9) ◽  
pp. 3051-3067
Author(s):  
Amy E. Ramage ◽  
Semra Aytur ◽  
Kirrie J. Ballard

Purpose Brain imaging has provided puzzle pieces in the understanding of language. In neurologically healthy populations, the structure of certain brain regions is associated with particular language functions (e.g., semantics, phonology). In studies on focal brain damage, certain brain regions or connections are considered sufficient or necessary for a given language function. However, few of these account for the effects of lesioned tissue on the “functional” dynamics of the brain for language processing. Here, functional connectivity (FC) among semantic–phonological regions of interest (ROIs) is assessed to fill a gap in our understanding about the neural substrates of impaired language and whether connectivity strength can predict language performance on a clinical tool in individuals with aphasia. Method Clinical assessment of language, using the Western Aphasia Battery–Revised, and resting-state functional magnetic resonance imaging data were obtained for 30 individuals with chronic aphasia secondary to left-hemisphere stroke and 18 age-matched healthy controls. FC between bilateral ROIs was contrasted by group and used to predict Western Aphasia Battery–Revised scores. Results Network coherence was observed in healthy controls and participants with stroke. The left–right premotor cortex connection was stronger in healthy controls, as reported by New et al. (2015) in the same data set. FC of (a) connections between temporal regions, in the left hemisphere and bilaterally, predicted lexical–semantic processing for auditory comprehension and (b) ipsilateral connections between temporal and frontal regions in both hemispheres predicted access to semantic–phonological representations and processing for verbal production. Conclusions Network connectivity of brain regions associated with semantic–phonological processing is predictive of language performance in poststroke aphasia. The most predictive connections involved right-hemisphere ROIs—particularly those for which structural adaptions are known to associate with recovered word retrieval performance. Predictions may be made, based on these findings, about which connections have potential as targets for neuroplastic functional changes with intervention in aphasia. Supplemental Material https://doi.org/10.23641/asha.12735785


Sign in / Sign up

Export Citation Format

Share Document