scholarly journals Live Poultry Trading Drives China's H7N9 Viral Evolution and Geographical Network Propagation

2018 ◽  
Vol 6 ◽  
Author(s):  
Ruiyun Li ◽  
Tao Zhang ◽  
Yuqi Bai ◽  
Haochuan Li ◽  
Yong Wang ◽  
...  
2016 ◽  
Vol 11 (2) ◽  
pp. 203-210 ◽  
Author(s):  
Jiguang Wang ◽  
Judith Kribelbauer ◽  
Raul Rabadan

2000 ◽  
Vol 2 (9) ◽  
pp. 987-996 ◽  
Author(s):  
Caroline F Ryschkewitsch ◽  
Jonathan S Friedlaender ◽  
Charles S Mgone ◽  
David V Jobes ◽  
Hansjürgen T Agostini ◽  
...  

Author(s):  
Manish C Choudhary ◽  
Charles R Crain ◽  
Xueting Qiu ◽  
William Hanage ◽  
Jonathan Z Li

Abstract Background Both SARS-CoV-2 reinfection and persistent infection have been reported, but sequence characteristics in these scenarios have not been described. We assessed published cases of SARS-CoV-2 reinfection and persistence, characterizing the hallmarks of reinfecting sequences and the rate of viral evolution in persistent infection. Methods A systematic review of PubMed was conducted to identify cases of SARS-CoV-2 reinfection and persistence with available sequences. Nucleotide and amino acid changes in the reinfecting sequence were compared to both the initial and contemporaneous community variants. Time-measured phylogenetic reconstruction was performed to compare intra-host viral evolution in persistent SARS-CoV-2 to community-driven evolution. Results Twenty reinfection and nine persistent infection cases were identified. Reports of reinfection cases spanned a broad distribution of ages, baseline health status, reinfection severity, and occurred as early as 1.5 months or >8 months after the initial infection. The reinfecting viral sequences had a median of 17.5 nucleotide changes with enrichment in the ORF8 and N genes. The number of changes did not differ by the severity of reinfection and reinfecting variants were similar to the contemporaneous sequences circulating in the community. Patients with persistent COVID-19 demonstrated more rapid accumulation of sequence changes than seen with community-driven evolution with continued evolution during convalescent plasma or monoclonal antibody treatment. Conclusions Reinfecting SARS-CoV-2 viral genomes largely mirror contemporaneous circulating sequences in that geographic region, while persistent COVID-19 has been largely described in immunosuppressed individuals and is associated with accelerated viral evolution.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1322
Author(s):  
Ruiming Hu ◽  
Leyi Wang ◽  
Qingyun Liu ◽  
Lin Hua ◽  
Xi Huang ◽  
...  

Pseudorabies virus (PRV) is an economically significant swine infectious agent. A PRV outbreak took place in China in 2011 with novel virulent variants. Although the association of viral genomic variability with pathogenicity is not fully confirmed, the knowledge concerning PRV genomic diversity and evolution is still limited. Here, we sequenced 54 genomes of novel PRV variants isolated in China from 2012 to 2017. Phylogenetic analysis revealed that China strains and US/Europe strains were classified into two separate genotypes. PRV strains isolated from 2012 to 2017 in China are highly related to each other and genetically close to classic China strains such as Ea, Fa, and SC. RDP analysis revealed 23 recombination events within novel PRV variants, indicating that recombination contributes significantly to the viral evolution. The selection pressure analysis indicated that most ORFs were under evolutionary constraint, and 19 amino acid residue sites in 15 ORFs were identified under positive selection. Additionally, 37 unique mutations were identified in 19 ORFs, which distinguish the novel variants from classic strains. Overall, our study suggested that novel PRV variants might evolve from classical PRV strains through point mutation and recombination mechanisms.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 808
Author(s):  
Laura Pérez-Lago ◽  
Teresa Aldámiz-Echevarría ◽  
Rita García-Martínez ◽  
Leire Pérez-Latorre ◽  
Marta Herranz ◽  
...  

A successful Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variant, B.1.1.7, has recently been reported in the UK, causing global alarm. Most likely, the new variant emerged in a persistently infected patient, justifying a special focus on these cases. Our aim in this study was to explore certain clinical profiles involving severe immunosuppression that may help explain the prolonged persistence of viable viruses. We present three severely immunosuppressed cases (A, B, and C) with a history of lymphoma and prolonged SARS-CoV-2 shedding (2, 4, and 6 months), two of whom finally died. Whole-genome sequencing of 9 and 10 specimens from Cases A and B revealed extensive within-patient acquisition of diversity, 12 and 28 new single nucleotide polymorphisms, respectively, which suggests ongoing SARS-CoV-2 replication. This diversity was not observed for Case C after analysing 5 sequential nasopharyngeal specimens and one plasma specimen, and was only observed in one bronchoaspirate specimen, although viral viability was still considered based on constant low Ct values throughout the disease and recovery of the virus in cell cultures. The acquired viral diversity in Cases A and B followed different dynamics. For Case A, new single nucleotide polymorphisms were quickly fixed (13–15 days) after emerging as minority variants, while for Case B, higher diversity was observed at a slower emergence: fixation pace (1–2 months). Slower SARS-CoV-2 evolutionary pace was observed for Case A following the administration of hyperimmune plasma. This work adds knowledge on SARS-CoV-2 prolonged shedding in severely immunocompromised patients and demonstrates viral viability, noteworthy acquired intra-patient diversity, and different SARS-CoV-2 evolutionary dynamics in persistent cases.


Science ◽  
2021 ◽  
Vol 371 (6526) ◽  
pp. 284-288 ◽  
Author(s):  
Brian Hie ◽  
Ellen D. Zhong ◽  
Bonnie Berger ◽  
Bryan Bryson

The ability for viruses to mutate and evade the human immune system and cause infection, called viral escape, remains an obstacle to antiviral and vaccine development. Understanding the complex rules that govern escape could inform therapeutic design. We modeled viral escape with machine learning algorithms originally developed for human natural language. We identified escape mutations as those that preserve viral infectivity but cause a virus to look different to the immune system, akin to word changes that preserve a sentence’s grammaticality but change its meaning. With this approach, language models of influenza hemagglutinin, HIV-1 envelope glycoprotein (HIV Env), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike viral proteins can accurately predict structural escape patterns using sequence data alone. Our study represents a promising conceptual bridge between natural language and viral evolution.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Ge Li ◽  
Xun Wang ◽  
Qingmei Li ◽  
Jifei Yang ◽  
Xiao Liu ◽  
...  

Abstract Background H7N9 avian influenza virus (AIV) including highly and low pathogenic viruses have been detected in China since 2013. H7N9 AIV has a high mortality rate after infection in humans, and most human cases have close contacted with poultry in the live poultry market. Therefore, it is necessary to develop a rapid point-of-care testing (POCT) technique for H7N9 AIV detection. Methods The H7N9 AIV was inactivated and purified, and was used as the antigen to immunize BALB/c. Twelve H7-HA specific monoclonal antibodies (McAbs) were produced through the hybridoma technique. The McAb 10A8 was conjugated with colloid gold as detecting antibody; McAb 9B6 was dispensed on the nitrocellulose membran as the capture test line and the Goat-anti mouse IgG antibody was dispensed as control line respectively. The immunochromatographic strip was prepared. Results The analysis of ELISA and virus neutralization test showed that the obtained McAbs specifically recognized H7 HA. Based on the prepared strip, the detection of H7 AIV was achieved within 10 min. No cross-reaction occurred between H7 AIVs and other tested viruses. The detection limit of the strip for H7 was 2.4 log10EID50/0.1 mL for chicken swab samples. Conclusion The McAbs were specific for H7 and the immunochromatographic strip developed in this study was convenient, rapid and reliable for the detection of H7 AIV. The strip could provide an effective method for the rapid and early detection of H7 AIV.


Author(s):  
Elliott S. Chiu ◽  
Sue VandeWoude

Endogenous retroviruses (ERVs) serve as markers of ancient viral infections and provide invaluable insight into host and viral evolution. ERVs have been exapted to assist in performing basic biological functions, including placentation, immune modulation, and oncogenesis. A subset of ERVs share high nucleotide similarity to circulating horizontally transmitted exogenous retrovirus (XRV) progenitors. In these cases, ERV–XRV interactions have been documented and include ( a) recombination to result in ERV–XRV chimeras, ( b) ERV induction of immune self-tolerance to XRV antigens, ( c) ERV antigen interference with XRV receptor binding, and ( d) interactions resulting in both enhancement and restriction of XRV infections. Whereas the mechanisms governing recombination and immune self-tolerance have been partially determined, enhancement and restriction of XRV infection are virus specific and only partially understood. This review summarizes interactions between six unique ERV–XRV pairs, highlighting important ERV biological functions and potential evolutionary histories in vertebrate hosts. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 9 is February 16, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document