scholarly journals Artificial Neural Network-Based Uplink Power Prediction From Multi-Floor Indoor Measurement Campaigns in 4G Networks

2021 ◽  
Vol 9 ◽  
Author(s):  
Taghrid Mazloum ◽  
Shanshan Wang ◽  
Maryem Hamdi ◽  
Biruk Ashenafi Mulugeta ◽  
Joe Wiart

Paving the path toward the fifth generation (5G) of wireless networks with a huge increase in the number of user equipment has strengthened public concerns on human exposure to radio-frequency electromagnetic fields (RF EMFs). This requires an assessment and monitoring of RF EMF exposure, in an almost continuous way. Particular interest goes to the uplink (UL) exposure, assessed through the transmission power of the mobile phone, due to its close proximity to the human body. However, the UL transmit (TX) power is not provided by the off-the-shelf modem and RF devices. In this context, we first conduct measurement campaigns in a multi-floor indoor environment using a drive test solution to record both downlink (DL) and UL connection parameters for Long Term Evolution (LTE) networks. Several usage services (including WhatsApp voice calls, WhatsApp video calls, and file uploading) are investigated in the measurement campaigns. Then, we propose an artificial neural network (ANN) model to estimate the UL TX power, by exploiting easily available parameters such as the DL connection indicators and the information related to an indoor environment. With those easy-accessed input features, the proposed ANN model is able to obtain an accurate estimation of UL TX power with a mean absolute error (MAE) of 1.487 dB.

2018 ◽  
Vol 19 (4) ◽  
pp. 335-345
Author(s):  
Poojari Yugendar ◽  
K.V.R. Ravishankar

Abstract Research scientists have been developing mathematical tools to detect objects, recognize objects and actions, and discover behaviours and events to human abilities. In all these efforts, the understanding of human actions is of a special interest for both application and research purposes. In this study, crowd flow parameters are analysed by considering linear and non linear relationships between stream flow parameters using conventional and soft computing approach. Deterministics models like Greenshield and Underwood were applied in the study to describe flow characteristics. A non-linear model based on Artificial Neural Network (ANN) approach is also used to build a relationship between different crowd flow parameters and compared with the other deterministic models. ANN model gave good results based on accuracy measurement to deterministic models because of their self-processing and intelligent behaviour. Mean absolute error (MAE) and root mean square error (RMSE) values for the best fitted ANN model are less than those for the other models. ANN model gives better performance in fitness of model and future prediction of flow parameters.


2012 ◽  
Vol 170-173 ◽  
pp. 1013-1016
Author(s):  
Fu Qiang Gao ◽  
Xiao Qiang Wang

Prediction of peak particle velocity (PPV) is very complicated due to the number of influencing parameters affecting seism wave propagation. In this paper, artificial neural network (ANN) is implemented to develop a model to predict PPV in a blasting operation. Based on the measured parameters of maximum explosive charge used per delay and distance between blast face to monitoring point, a three-layer ANN was found to be optimum with architecture 2-5-1. Through the analysis of coefficient of determination (CoD) and mean absolute error (MAE) between monitored and predicted values of PPV, it indicates that the forecast data by the ANN model is close to the actua1 values.


2013 ◽  
Vol 315 ◽  
pp. 221-225 ◽  
Author(s):  
Ahmad F.A. Rahman ◽  
Hazlina Selamat ◽  
Fatimah S. Ismail

In this paper, a new Artificial Neural Network (ANN) model that relates human comfort and electrical power consumption of a building with temperature, illumination and carbon dioxide (CO2) level inside the building is developed. The model has been developed using samples of simulated data representing the indoor environment variables. Results have shown that neural network with 14 hidden layer neurons produces outputs that is closest to the actual system outputs.


Author(s):  
Thai Binh Pham ◽  
Sushant K. Singh ◽  
Hai-Bang Ly

Soil Coefficient of Consolidation (Cv) is a crucial mechanical parameter and used to characterize whether the soil undergoes consolidation or compaction when subjected to pressure. In order to define such a parameter, the experimental approaches are costly, time-consuming, and required appropriate equipment to perform the tests. In this study, the development of an alternative manner to estimate the Cv, based on Artificial Neural Network (ANN), was conducted. A database containing 188 tests was used to develop the ANN model. Two structures of ANN were considered, and the accuracy of each model was assessed using common statistical measurements such as the coefficient of determination (R2), root mean square error (RMSE), and mean absolute error (MAE). In performing 600 simulations in each case, the ANN structure containing 14 neurons was statistically superior to the other one. Finally, a typical ANN result was presented to prove that it can be an excellent predictor of the problem, with a satisfying accuracy performance that yielded of RMSE = 0.0614, MAE = 0.0415, and R2 = 0.99727. This study might help in quick and accurate prediction of the Cv used in civil engineering problems.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 301 ◽  
Author(s):  
YoungHyun Koo ◽  
Myeongchan Oh ◽  
Sung-Min Kim ◽  
Hyeong-Dong Park

The power capacity of solar photovoltaics (PVs) in Korea has grown dramatically in recent years, and an accurate estimation of solar resources is crucial for the efficient management of these solar PV systems. Since the number of solar irradiance measurement sites is insufficient for Korea, satellite images can be useful sources for estimating solar irradiance over a wide area of Korea. In this study, an artificial neural network (ANN) model was constructed to calculate hourly global horizontal solar irradiance (GHI) from Korea Communication, Ocean and Meteorological Satellite (COMS) Meteorological Imager (MI) images. Solar position variables and five COMS MI channels were used as inputs for the ANN model. The basic ANN model was determined to have a window size of five for the input satellite images and two hidden layers, with 30 nodes on each hidden layer. After these ANN parameters were determined, the temporal and spatial applicability of the ANN model for solar irradiance mapping was validated. The final ANN ensemble model, which calculated the hourly GHI from 10 independent ANN models, exhibited a correlation coefficient (R) of 0.975 and root mean square error (RMSE) of 54.44 W/m² (12.93%), which were better results than for other remote-sensing based works for Korea. Finally, GHI maps for Korea were generated using the final ANN ensemble model. This COMS-based ANN model can contribute to the efficient estimation of solar resources and the improvement of the operational efficiency of solar PV systems for Korea.


2018 ◽  
Vol 11 (3) ◽  
pp. 1593-1602
Author(s):  
Yaagyanika Gehlot ◽  
Bhairvi Sharma ◽  
P. Muthu ◽  
Hariharan Muthusamy ◽  
S. Latha

Silver nitrous aqueous solution is used to biosynthesize Silver nanoparticles (Ag-NPs) through a green and easy way using tuber powder extracts of Curcuma Longa (C. longa). The aim is to model an Artificial Neural Network (ANN) using seven existing algorithms in MATLAB for forecasting the size of the silver nanoparticle with volume of both C. longa extraction and AgNO3, time of stirring and temperature of reaction as input functions. Several techniques including Quasi-Newton, Conjugate Gradient and Levenberg-Maquardt are employed for training the designed ANN model, a feed-forward backpropagation network with different combinations of architecture and transfer functions. Each algorithm is fashioned to obtain the best performance by calculating the Regression (R), Mean Square Error (MSE), Mean Absolute Error (MAE) and Error Sum of Squares (SSE), thereby comparing the results and propounding the optimum algorithm technique for the discussed application in nanoengineering. Finally, based on the findings, the optimum network is proposed through the simulation results.


2020 ◽  
Vol 152 ◽  
pp. 01007
Author(s):  
Nabila Ghedhab ◽  
Fatiha Youcefettoumi ◽  
Abdelhamid Loukriz ◽  
Allaeddine Jouama

This paper presents an intelligent method to extract the maximum power from the photovoltaic panel using artificial neural network (ANN). The inputs data required for training the ANN controller are obtained from real weather conditions and the desired output is obtained from perturb and observe (P&O) method. The proposed model is capable to improve the dynamic response and steady-state performance of the system, provides an accurate identification of the optimal operating point and an accurate estimation of the maximum power from the photovoltaic panels. The proposed ANN model is compared with conventional P&O model and shown that ANN controller could increase the power output by approximately 20%. The system is simulated and studied using MATLAB software.


Author(s):  
Thai Binh Pham ◽  
Sushant K. Singh ◽  
Hai-Bang Ly

Soil Coefficient of Consolidation (Cv) is a crucial mechanical parameter and used to characterize whether the soil undergoes consolidation or compaction when subjected to pressure. In order to define such a parameter, the experimental approaches are costly, time-consuming, and required appropriate equipment to perform the tests. In this study, the development of an alternative manner to estimate the Cv, based on Artificial Neural Network (ANN), was conducted. A database containing 188 tests was used to develop the ANN model. Two structures of ANN were considered, and the accuracy of each model was assessed using common statistical measurements such as the coefficient of determination (R2), root mean square error (RMSE), and mean absolute error (MAE). In performing 600 simulations in each case, the ANN structure containing 14 neurons was statistically superior to the other one. Finally, a typical ANN result was presented to prove that it can be an excellent predictor of the problem, with a satisfying accuracy performance that yielded of RMSE = 0.0614, MAE = 0.0415, and R2 = 0.99727. This study might help in quick and accurate prediction of the Cv used in civil engineering problems.


2019 ◽  
Vol 12 (3) ◽  
pp. 248-261
Author(s):  
Baomin Wang ◽  
Xiao Chang

Background: Angular contact ball bearing is an important component of many high-speed rotating mechanical systems. Oil-air lubrication makes it possible for angular contact ball bearing to operate at high speed. So the lubrication state of angular contact ball bearing directly affects the performance of the mechanical systems. However, as bearing rotation speed increases, the temperature rise is still the dominant limiting factor for improving the performance and service life of angular contact ball bearings. Therefore, it is very necessary to predict the temperature rise of angular contact ball bearings lubricated with oil-air. Objective: The purpose of this study is to provide an overview of temperature calculation of bearing from many studies and patents, and propose a new prediction method for temperature rise of angular contact ball bearing. Methods: Based on the artificial neural network and genetic algorithm, a new prediction methodology for bearings temperature rise was proposed which capitalizes on the notion that the temperature rise of oil-air lubricated angular contact ball bearing is generally coupling. The influence factors of temperature rise in high-speed angular contact ball bearings were analyzed through grey relational analysis, and the key influence factors are determined. Combined with Genetic Algorithm (GA), the Artificial Neural Network (ANN) model based on these key influence factors was built up, two groups of experimental data were used to train and validate the ANN model. Results: Compared with the ANN model, the ANN-GA model has shorter training time, higher accuracy and better stability, the output of ANN-GA model shows a good agreement with the experimental data, above 92% of bearing temperature rise under varying conditions can be predicted using the ANNGA model. Conclusion: A new method was proposed to predict the temperature rise of oil-air lubricated angular contact ball bearings based on the artificial neural network and genetic algorithm. The results show that the prediction model has good accuracy, stability and robustness.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhonghui Thong ◽  
Jolena Ying Ying Tan ◽  
Eileen Shuzhen Loo ◽  
Yu Wei Phua ◽  
Xavier Liang Shun Chan ◽  
...  

AbstractRegression models are often used to predict age of an individual based on methylation patterns. Artificial neural network (ANN) however was recently shown to be more accurate for age prediction. Additionally, the impact of ethnicity and sex on our previous regression model have not been studied. Furthermore, there is currently no age prediction study investigating the lower limit of input DNA at the bisulfite treatment stage prior to pyrosequencing. Herein, we evaluated both regression and ANN models, and the impact of ethnicity and sex on age prediction for 333 local blood samples using three loci on the pyrosequencing platform. Subsequently, we trained a one locus-based ANN model to reduce the amount of DNA used. We demonstrated that the ANN model has a higher accuracy of age prediction than the regression model. Additionally, we showed that ethnicity did not affect age prediction among local Chinese, Malays and Indians. Although the predicted age of males were marginally overestimated, sex did not impact the accuracy of age prediction. Lastly, we present a one locus, dual CpG model using 25 ng of input DNA that is sufficient for forensic age prediction. In conclusion, the two ANN models validated would be useful for age prediction to provide forensic intelligence leads.


Sign in / Sign up

Export Citation Format

Share Document