scholarly journals Anabolic Function Downstream of TOR Controls Trade-offs Between Longevity and Reproduction at the Level of Specific Tissues in C. elegans

2021 ◽  
Vol 2 ◽  
Author(s):  
Amber C. Howard ◽  
Dilawar Mir ◽  
Santina Snow ◽  
Jordan Horrocks ◽  
Hussein Sayed ◽  
...  

As the most energetically expensive cellular process, translation must be finely tuned to environmental conditions. Dietary restriction attenuates signaling through the nutrient sensing mTOR pathway, which reduces translation and redirects resources to preserve the soma. These responses are associated with increased lifespan but also anabolic impairment, phenotypes also observed when translation is genetically suppressed. Here, we restricted translation downstream of mTOR separately in major tissues in C. elegans to better understand their roles in systemic adaptation and whether consequences to anabolic impairment were separable from positive effects on lifespan. Lowering translation in neurons, hypodermis, or germline tissue led to increased lifespan under well-fed conditions and improved survival upon withdrawal of food, indicating that these are key tissues coordinating enhanced survival when protein synthesis is reduced. Surprisingly, lowering translation in body muscle during development shortened lifespan while accelerating and increasing reproduction, a reversal of phenotypic trade-offs associated with systemic translation suppression. Suppressing mTORC1 selectively in body muscle also increased reproduction while slowing motility during development. In nature, this may be indicative of reduced energy expenditure related to foraging, acting as a “GO!” signal for reproduction. Together, results indicate that low translation in different tissues helps direct distinct systemic adaptations and suggest that unknown endocrine signals mediate these responses. Furthermore, mTOR or translation inhibitory therapeutics that target specific tissues may achieve desired interventions to aging without loss of whole-body anabolism.

2020 ◽  
Author(s):  
Edward R. Ivimey-Cook ◽  
Kris Sales ◽  
Hanne Carlsson ◽  
Simone Immler ◽  
Tracey Chapman ◽  
...  

AbstractDietary restriction increases lifespan in a broad variety of organisms and improves health in humans. However, long-term transgenerational consequences of dietary interventions are poorly understood. Here we investigated the effect of dietary restriction by temporary fasting (TF) on mortality risk, age-specific reproduction and fitness across three generations of descendants in C. elegans. We show that while TF robustly reduces mortality risk and improves late-life reproduction in the parental generation (P0), it has a wide range of both positive and deleterious effects on future generations (F1-F3). Remarkably, great-grandparental exposure to TF in early-life reduces fitness and increases mortality risk of F3 descendants to such an extent that TF no longer promotes a lifespan extension. These findings reveal that transgenerational trade-offs accompany the instant benefits of dietary restriction underscoring the need to consider fitness of future generations in pursuit of healthy ageing.


1990 ◽  
Vol 68 (6) ◽  
pp. 2612-2617 ◽  
Author(s):  
D. L. Ballor ◽  
L. J. Tommerup ◽  
D. P. Thomas ◽  
D. B. Smith ◽  
R. E. Keesey

The combined influence of exercise training and dietary restriction on daily energy expenditure was evaluated by exposing 48 male Sprague-Dawley rats to one of three food intake conditions [ad libitum (AL), moderately restricted (MR), or severely restricted (SR)] and to one of two exercise conditions [treadmill exercised (E) or cage confined (CC)]. After 10 wk of exercise and dietary restriction, the MR-CC and MR-E rats weighed 84 and 86%, respectively, of AL-CC, whereas the SR-CC and SR-E rats weighed 66 and 68% of AL-CC. Dietary restriction and subsequent weight loss produced significant reductions in both total and resting daily energy expenditure. Exercise partially reversed this effect, but the extent of this reversal diminished as the severity of dietary restriction was increased. These results raise the distinct possibility that inconsistencies in the current literature concerning the effects of exercise on whole body metabolism during periods of dietary restriction might be reconciled by an appreciation and an understanding of the influence that duration of exercise training and severity of food restriction have on this measure.


1992 ◽  
Vol 263 (4) ◽  
pp. E624-E631 ◽  
Author(s):  
L. Willommet ◽  
Y. Schutz ◽  
R. Whitehead ◽  
E. Jequier ◽  
E. B. Fern

Whole body protein metabolism and resting energy expenditure (REE) were measured at 11, 23, and 33 wk of pregnancy in nine pregnant (not malnourished) Gambian women and in eight matched nonpregnant nonlactating (NPNL) matched controls. Rates of whole body nitrogen flux, protein synthesis, and protein breakdown were determined in the fed state from the level of isotope enrichment of urinary urea and ammonia during a period of 9 h after a single oral dose of [15N]glycine. At regular intervals, REE was measured by indirect calorimetry (hood system). Based on the arithmetic end-product average of values obtained with urea and ammonia, a significant increase in whole body protein synthesis was observed during the second trimester (5.8 +/- 0.4 g.kg-1.day-1) relative to values obtained both for the NPNL controls (4.5 +/- 0.3 g.kg-1.day-1) and those during the first trimester (4.7 +/- 0.3 g.kg-1.day-1). There was a significant rise in REE during the third trimester both in the preprandial and postprandial states. No correlation was found between REE after meal ingestion and the rate of whole body protein synthesis.


1987 ◽  
Vol 115 (3) ◽  
pp. 439-445 ◽  
Author(s):  
G. E. Lobley ◽  
A. Connell ◽  
V. Buchan ◽  
P. A. Skene ◽  
J. M. Fletcher

ABSTRACT The effects of episodic infusion of testosterone into the vascular system on energy expenditure, nitrogen retention and whole body protein synthesis (determined from [1-14C]leucine kinetics) were studied in castrated male lambs under conditions of controlled food intake. Comparisons were made between a 10-day control period and a 10-day treatment period for each lamb. Infusion of testosterone produced a significant increase in heat production, but the magnitude (198 kJ/day, +2·5% was less than the differences in energy expenditure expected between entire and castrated male ruminants. The retention of nitrogen improved by 1·24 g/day ( + 22%) in response to the administration of androgen, and this was accompanied by a decrease in amino acid oxidation. Total protein synthesis also declined, and the anabolic nature of testosterone supply must, therefore, be effected through a reduction in the breakdown of protein, the mechanism being similar to that proposed for certain anabolic steroids and the β-agonist, clenbuterol. Contrary to other reports, the presence of testosterone had no effect on the plasma concentration of GH. J. Endocr. (1987) 115, 439–445


1985 ◽  
Vol 19 (7) ◽  
pp. 679-687 ◽  
Author(s):  
C Catzeflis ◽  
Y Schutz ◽  
J-L Micheli ◽  
C Welsch ◽  
M J Arnaud ◽  
...  

2005 ◽  
Vol 126 (9) ◽  
pp. 929-937 ◽  
Author(s):  
Glenda Walker ◽  
Koen Houthoofd ◽  
Jacques R. Vanfleteren ◽  
David Gems

Sign in / Sign up

Export Citation Format

Share Document