scholarly journals Evaluation of Socially-Aware Robot Navigation

2022 ◽  
Vol 8 ◽  
Author(s):  
Yuxiang Gao ◽  
Chien-Ming Huang

As mobile robots are increasingly introduced into our daily lives, it grows ever more imperative that these robots navigate with and among people in a safe and socially acceptable manner, particularly in shared spaces. While research on enabling socially-aware robot navigation has expanded over the years, there are no agreed-upon evaluation protocols or benchmarks to allow for the systematic development and evaluation of socially-aware navigation. As an effort to aid more productive development and progress comparisons, in this paper we review the evaluation methods, scenarios, datasets, and metrics commonly used in previous socially-aware navigation research, discuss the limitations of existing evaluation protocols, and highlight research opportunities for advancing socially-aware robot navigation.

Robotica ◽  
2009 ◽  
Vol 28 (3) ◽  
pp. 465-475 ◽  
Author(s):  
Edith Heußlein ◽  
Blair W. Patullo ◽  
David L. Macmillan

SUMMARYBiomimetic applications play an important role in informing the field of robotics. One aspect is navigation – a skill automobile robots require to perform useful tasks. A sub-area of this is search strategies, e.g. for search and rescue, demining, exploring surfaces of other planets or as a default strategy when other navigation mechanisms fail. Despite that, only a few approaches have been made to transfer biological knowledge of search mechanisms on surfaces along the ground into biomimetic applications. To provide insight for robot navigation strategies, this study describes the paths a crayfish used to explore terrain. We tracked movement when different sets of sensory input were available. We then tested this algorithm with a computer model crayfish and concluded that the movement of C. destructor has a specialised walking strategy that could provide a suitable baseline algorithm for autonomous mobile robots during navigation.


Agriculture ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 954
Author(s):  
Abhijeet Ravankar ◽  
Ankit A. Ravankar ◽  
Arpit Rawankar ◽  
Yohei Hoshino

In recent years, autonomous robots have extensively been used to automate several vineyard tasks. Autonomous navigation is an indispensable component of such field robots. Autonomous and safe navigation has been well studied in indoor environments and many algorithms have been proposed. However, unlike structured indoor environments, vineyards pose special challenges for robot navigation. Particularly, safe robot navigation is crucial to avoid damaging the grapes. In this regard, we propose an algorithm that enables autonomous and safe robot navigation in vineyards. The proposed algorithm relies on data from a Lidar sensor and does not require a GPS. In addition, the proposed algorithm can avoid dynamic obstacles in the vineyard while smoothing the robot’s trajectories. The curvature of the trajectories can be controlled, keeping a safe distance from both the crop and the dynamic obstacles. We have tested the algorithm in both a simulation and with robots in an actual vineyard. The results show that the robot can safely navigate the lanes of the vineyard and smoothly avoid dynamic obstacles such as moving people without abruptly stopping or executing sharp turns. The algorithm performs in real-time and can easily be integrated into robots deployed in vineyards.


Author(s):  
Lee Gim Hee ◽  
Marcelo H. Ang Jr.

The development of autonomous mobile robots is continuously gaining importance particularly in the military for surveillance as well as in industry for inspection and material handling tasks. Another emerging market with enormous potential is mobile robots for entertainment. A fundamental requirement for autonomous mobile robots in most of its applications is the ability to navigate from a point of origin to a given goal. The mobile robot must be able to generate a collision-free path that connects the point of origin and the given goal. Some of the key algorithms for mobile robot navigation will be discussed in this article.


Sign in / Sign up

Export Citation Format

Share Document