scholarly journals Does Plant Biodiversity Influence Nutrient Cycles?

2021 ◽  
Vol 9 ◽  
Author(s):  
Eva Koller-France ◽  
Wolfgang Wilcke ◽  
Yvonne Oelmann

All living things, like humans, animals, plants, and even microbes, need to take up the same nutrient elements to live, most importantly nitrogen and phosphorus. Understanding the cycling of these elements through the ecosystem is one key to understanding why ecosystems work the way they do. One of the questions we are asking is if the diversity of organisms, like plants or insects, is related to these nutrient cycles. When plant communities are made up of many different plant species, they seem to make better use of the available soil nutrients than plant communities made up of fewer species. This may be because of something called complementarity, which means different plant species access the available nutrients in different ways, for example from different soil depths. In this article, we will describe the connections between plant biodiversity and soil nutrient cycling and discuss the implications for the functioning of the whole ecosystem.

Soil Research ◽  
2016 ◽  
Vol 54 (3) ◽  
pp. 265 ◽  
Author(s):  
Fang You ◽  
Ram C. Dalal ◽  
Longbin Huang

Root zone soil properties can significantly influence the establishment of revegetated plant communities and alter their development trajectories in mined landscapes, due to closely coupled biogeochemical linkages between soil and plant systems. The present study aimed to characterise physicochemical and biochemical conditions in soil colonised by slow-growing native plant species: Acacia chisholmii (C3, native leguminous shrub) and Triodia pungens (spinifex C4 grass) in Mt Isa, North-west Queensland, Australia. This is to provide the basis for engineering growth media and root zones suitable for supporting target native plant communities to be revegetated in mined landscapes under subtropical and semiarid climatic conditions. Litter chemistry, soil physicochemical properties, and microbial community structure based on phospholipid fatty acids (PLFAs) biomarker method and activities (basal respiration, net mineralisation, dehydrogenase, invertase, urease and neutral phosphatase activities) were characterised in the surface soils beneath the keystone native plant species. Results showed that soils sampled were generally infertile with low levels of total organic carbon (TOC), available nutrients and slow cycling processes with bacteria dominant microbial communities supporting the native plant species. Surface soils underneath acacia and spinifex were modified by in situ litter return, in terms of TOC, and structure and functions of microbial communities. The levels of soil microbial biomass C and N, basal respiration rate and net mineralisation rate in the acacia soil were twice as much as those in the spinifex. Microbial communities in the acacia soil had a greater fungal:bacterial ratio than in the spinifex. On this basis, growth media and root zones for revegetating native acacia-spinifex communities at local mined landscapes may be engineered by using plant organic matter remediation to supply available nutrients and to rehabilitate suitable microbial communities for in situ litter decomposition and nutrient cycling.


2019 ◽  
Vol 116 (17) ◽  
pp. 8419-8424 ◽  
Author(s):  
Yoann Le Bagousse-Pinguet ◽  
Santiago Soliveres ◽  
Nicolas Gross ◽  
Rubén Torices ◽  
Miguel Berdugo ◽  
...  

Biodiversity encompasses multiple attributes such as the richness and abundance of species (taxonomic diversity), the presence of different evolutionary lineages (phylogenetic diversity), and the variety of growth forms and resource use strategies (functional diversity). These biodiversity attributes do not necessarily relate to each other and may have contrasting effects on ecosystem functioning. However, how they simultaneously influence the provision of multiple ecosystem functions related to carbon, nitrogen, and phosphorus cycling (multifunctionality) remains unknown. We evaluated the effects of the taxonomic, phylogenetic, and functional attributes of dominant (mass ratio effects) and subordinate (richness effect) plant species on the multifunctionality of 123 drylands from six continents. Our results highlight the importance of the phylogenetic and functional attributes of subordinate species as key drivers of multifunctionality. In addition to a higher taxonomic richness, we found that simultaneously increasing the richness of early diverging lineages and the functional redundancy between species increased multifunctionality. In contrast, the richness of most recent evolutionary lineages and the functional and phylogenetic attributes of dominant plant species (mass ratio effects) were weakly correlated with multifunctionality. However, they were important drivers of individual nutrient cycles. By identifying which biodiversity attributes contribute the most to multifunctionality, our results can guide restoration efforts aiming to maximize either multifunctionality or particular nutrient cycles, a critical step to combat dryland desertification worldwide.


Author(s):  
Frank Berendse ◽  
Rob H. E. M. Geerts ◽  
Wim Th. Elberse ◽  
Thiemo Martijn Bezemer ◽  
Paul W. Goedhart ◽  
...  

Author(s):  
D. N. Tiunov ◽  
◽  
E. G. Efimik ◽  

The problem of invasion of Sosnowsky hogweed (Heracleum sosnowskyi Manden.) In the Lipovaya Gora SPNA in Perm is considered. A map of distribution of hogweed cenopopulations in the protected area is presented. The results of the influence of the invasion of Sosnovsky hogweed on the biodiversity of vascu-lar plants of some plant communities are presented. It was revealed that the invasion of hogweed into phytocenoses of the Lipovaya Gora protected area leads to a decrease in the biodiversity of vascular plants by about 26.4% (up to 12 plant species). The ways of introduction of cow parsnip into the communities of the protected area are considered. High seed productivity, high projective cover, reaching in some cases 100%, high phytomass, the presence of dormant seeds, rapid development in spring, and high anthropo-genic load on the territory determine the rapid spread of H. sosnowskyi.


2013 ◽  
Vol 31 (2) ◽  
pp. 469-482 ◽  
Author(s):  
G. Concenço ◽  
M. Tomazi ◽  
I.V.T. Correia ◽  
S.A. Santos ◽  
L. Galon

In simple terms, a phytosociological survey is a group of ecological evaluation methods whose aim is to provide a comprehensive overview of both the composition and distribution of plant species in a given plant community. To understand the applicability of phytosociological surveys for weed science, as well as their validity, their ecological basis should be understood and the most suitable ones need to be chosen, because cultivated fields present a relatively distinct group of selecting factors when compared to natural plant communities. For weed science, the following sequence of steps is proposed as the most suitable: (1) overall infestation; (2) phytosociological tables/graphs; (3) intra-characterization by diversity; (4) inter-characterization and grouping by cluster analysis. A summary of methods is established in order to assist Weed Science researchers through their steps into the realm of phytosociology.


2017 ◽  
Vol 68 (11) ◽  
pp. 2041 ◽  
Author(s):  
J. Patrick Laceby ◽  
Nina E. Saxton ◽  
Kate Smolders ◽  
Justine Kemp ◽  
Stephen J. Faggotter ◽  
...  

Restoration of riparian vegetation may reduce nutrient and sediment contamination of waterways while potentially enhancing stream channel complexity. Accordingly, the present study used a paired-site approach to investigate the effects of mature regrowth riparian vegetation on river channel morphology and soil nutrients (i.e. nitrogen and phosphorus), comparing four sites of degraded (pasture) and reforested reaches. A revised rapid assessment of riparian condition (RARC) was used to validate the site pairings. Riparian soil nutrient and elemental geochemistry were compared between paired sites, along with two parameters of channel width complexity and two for channel slope complexity. The RARC analysis confirmed the validity of the paired site design. The elemental geochemistry results indicated that underlying geology may affect the paired site analyses. Reaches with mature regrowth vegetation had greater channel width complexity but no difference in their riverbed slope complexity. In addition, degraded reaches had higher soil nutrient (i.e. nitrogen and phosphorus) concentrations, potentially indicative of the greater nutrient retention of pasture grass sites compared with mature regrowth forested reaches with less ground cover. Overall, the present study indicates that restoring mature regrowth riparian vegetation may increase river channel width complexity, although it may require canopy management to optimise the nutrient retention potential necessary to maximise the effect of riparian restoration strategies on freshwater environments.


Sign in / Sign up

Export Citation Format

Share Document