scholarly journals Phosphorus Dynamics in Sugarcane Fertilized With Filter Cake and Mineral Phosphate Sources

2021 ◽  
Vol 1 ◽  
Author(s):  
Anelisa de Aquino Vidal Lacerda Soares ◽  
Renato de Mello Prado ◽  
Gustavo Caione ◽  
Marcos Rodrigues ◽  
Paulo Sérgio Pavinato ◽  
...  

Organic residual material such as filter cake, combined with mineral phosphate fertilizers, may alter the soil phosphorus (P) bioavailability for sugarcane as a consequence of the competing effect in adsorption sites. This study aimed to quantify the changes in both the inorganic and organic soil P fractions as amended by phosphate fertilizer sources and filter cake and to link the P fractions to sugarcane response. An experiment was conducted in an Oxisol, in a randomized block design with factorial arrangement of 4 × 2, and three replications. Three P fertilizer sources (triple superphosphate, Araxá rock phosphate, and Bayóvar® reactive phosphate) plus a control (no P) were evaluated under both the presence and absence of filter cake. At the end of the second crop cycle, the following were measured: the cane yield, the tissue P content, and soil P fractions. All fertilizer sources were efficient in supplying P to sugarcane. Araxá rock phosphate generated a higher accumulation in moderately labile P, whereas the soluble triple superphosphate resulted in higher labile P. The filter cake, as a source of nutrients and organic matter, has an important contribution to maintain more available P for sugarcane absorption, especially when associated with triple superphosphate. The amount of P absorbed by sugarcane was correlated with the soil labile P (r = 0.58) and also with the inorganic P moderately labile (r = 0.42). Both fractions must be taken into account for a short- to medium-term availability of P for sugarcane in Oxisols.

Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 784 ◽  
Author(s):  
Waqas Ahmed ◽  
Kailou Liu ◽  
Muhammad Qaswar ◽  
Jing Huang ◽  
Qinghai Huang ◽  
...  

Elevated mineral fertilization may change the composition and increase the availability of soil phosphorus (P) in subtropical paddy soils and thus affect long-term plant growth. However, an understanding of the response of soil P fractions to long-term nitrogen, phosphorus and potassium (NPK) additions remains elusive. This study aimed to explore the responses of soil P-fractions and their mobility to different long-term chemical fertilization rates under a double rice cropping system. The rates of nitrogen (N), phosphorus (P), and potassium (K) in the low NPK treatment (LNPK) were 90, 45, and 75 kg ha−1 year−1, respectively, and in the high NPK treatment (HNPK), they were 180, 90, and 150 kg ha−1 year−1, respectively. The results showed that the concentrations of soil organic matter (SOM), total P, Olsen P, total N, and mineral N were remarkably increased under HNPK by 17.46%, 162.66%, 721.16%, 104.42%, and 414.46%, respectively, compared with those under control (CT). Compared to the CT P fractions, HNPK increased the labile P fractions (i.e., NaHCO3-Pi and NaHCO3-Po) by 322.25% and 83.53% and the moderately labile P fractions (i.e., NaOH-Pi, NaOH-Po and HCl. dil. Pi) by 163.54%, 183.78%, and 3167.25% respectively, while the non-labile P was decreased by the HNPK addition. P uptake and grain yield were increased by LNPK and HNPK by 10.02% and 35.20%, respectively, compared with CT. P use efficiency indices were also higher under HNPK than under LNPK. There was a strong positive relationship between grain yield and P use efficiency (R2 = 0.97). A redundancy analysis (RDA) showed a strong correlation between soil chemical properties and the labile and moderately labile P pools. Structural equation modeling (SEM) revealed that SOM, mineral N, and available P strongly control the labile P pool. In conclusion, NPK additions under the paddy soils significantly influences the soil P fractions. The soil P dynamics and the mechanisms governing the interactions between plants and soil nutrients are clearly explained in this study.


2019 ◽  
Vol 11 (4) ◽  
pp. 1006 ◽  
Author(s):  
Ying Han ◽  
Xiangwei Chen ◽  
Byoungkoo Choi

Freeze–thaw cycles stimulate the release of available soil phosphorus (P) in winter, and biochar as a soil amendment could improve P availability. Nevertheless, it is unclear how freeze–thaw cycles and biochar amendment interact to affect the soil P fractions and their availability in winter, particularly under different soil water conditions. We simulateda freeze–thaw cycle experimentto assess the effects of three factors on soil P fractions: soil moisture content (22%, 31%, and 45%), frequencies of freeze–thaw cycles (0, 1, 3, 6, and 12 times) and biochar amendment (soil and biochar-amended soil). Modified Hedley sequential P fractionation was conducted to measure the soil P fractions. Increasing the number of freeze–thaw cycles increased soil labile P fractions in the soil with the lowest moisture content (22%). After biochar amendment, the content of labile P decreased as the number of freeze–thaw cycles increased. Biochar amendment enhanced P availability in Mollisols owing to the direct effect of NaOH-Po, which has a large direct path coefficient. Principal components analysis showed that moisture content was a major factor influencing the variation in the P fractions. The P fractions were separated by the interactive effects of biochar amendment and freeze–thaw cycles in soils with a higher moisture content (45%), indicating that the effects of freeze–thaw cycles on P availability appear to be more pronounced in biochar-amended Mollisols of higher water contents.


2020 ◽  
Vol 9 (10) ◽  
pp. e3449108767
Author(s):  
Andria Paula Lima ◽  
Cledimar Rogério Lourenzi ◽  
Jucinei José Comin ◽  
Arcângelo Loss ◽  
Gustavo Brunetto ◽  
...  

The presence of weeds in apple orchards affects the dynamics of nutrients in the soil, including phosphorus (P). The objective of this study was to evaluate changes in distribution of P fractions in the soil of an apple orchard under different weed managements. The experiment was conducted in an apple orchard in the municipality of Urubici, Santa Catarina, Brazil. The following treatments were implemented in 2011: no weed management (NWM), desiccation of weeds in the apple-tree row (DR), and hoeing of weeds in the apple-tree row (HR). Soil samples of the 0-2.5, 2.5-5, 5-10, 10-15 and 15-20 cm layers were collected in the apple-tree rows at 24 months after the implementation of the experiment. The samples were subjected to chemical fractionation of P, obtaining the following fractions: PiAER, PiNaHCO3, PoNaHCO3, PiNaOH, PoNaOH, PiHCl, PiNaOH05, PoNaOH05, and Presidual. The presence of weeds increased the contents of the following soil P fractions in the surface layers: PiAER, PiNaHCO3, and PoNaHCO3, which are bioavailable to plants. A higher proportion of organic forms of P in the soil was found when the weeds were hoed; these fractions can be mineralized and used for nutrition of apple trees when labile P forms are exhausted.


Forests ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 172 ◽  
Author(s):  
Huixia Tian ◽  
Xiaoqin Cheng ◽  
Hairong Han ◽  
Hongyuan Jing ◽  
Xujun Liu ◽  
...  

Thinning is a common management practice in forest ecosystems. However, understanding whether thinning treatment will change the availability of phosphorus (P) in soils, and the effect of thinning on the seasonal dynamics of soil P fractions, are still limited. The objective of the present study was to assess seasonal variations in soil P fractions under different forest thinning management strategies in a Larch (Larix spp.) plantation in northern China. To accomplish this, we examined soil P fractions, soil physical–chemical properties, and litter biomass under control (CK), light (LT), moderate (MT) and high thinning (HT) treatments. Data were collected during the growing season of 2017. We found that most P fractions varied seasonally at different soil depths, with the highest values occurring in the summer and autumn. When compared to CK, MT enhanced the inorganic P (Pi) concentration extracted by resin strip (R-Pi). Labile organic P (Labile Po), moderately labile P and total P (TP) also increased in both MT and HT treatments irrespective of season. In contrast, less-labile Pi and Po fractions were lower in LT than in CK, especially when examining deeper soil layers. Our results suggest that LT leads to a strong ability to utilize Po and less-labile Pi. Moreover, the effect of thinning did not tend to increase with thinning intensity, P availability was maximized at the MT. Ultimately, we show that MT can improve soil P bioavailability and is recommended in Larix principis-rupprechtii Mayr. plantations of North China. Our results emphasize that the effect of thinning management on soil microenvironment is an important basis for evaluating soil nutrients such as soil P bioavailability.


2020 ◽  
Vol 36 (3) ◽  
pp. 524-535 ◽  
Author(s):  
Stefania C. Appelhans ◽  
Pedro Anibal Barbagelata ◽  
Ricardo Jose Miguel Melchiori ◽  
Flavio Gutierrez Boem

Soil Research ◽  
2020 ◽  
Vol 58 (3) ◽  
pp. 289
Author(s):  
L. B. Braos ◽  
A. C. T. Bettiol ◽  
L. G. Di Santo ◽  
M. E. Ferreira ◽  
M. C. P. Cruz

The evaluation of phosphorus (P) transformations in soil after application of manure or mineral P can improve soil management and optimise P use by plants. The objectives of the present study were to assess organic and inorganic P forms in two soils treated with dairy manure and triple superphosphate and to establish relationships between soil P fraction levels and P availability. Soil organic and inorganic P fractions were quantified using a pot experiment with two soils, a typical Hapludox and an arenic Hapludult, with three types of fertiliser treatments applied (no fertiliser application, application of dairy manure, and application of triple superphosphate, by adding 100 mg P dm–3 in the form of fertiliser in the two latter treatments) and four incubation times (15, 45, 90, and 180 days). Inorganic P was fractionated into aluminium-bound, iron-bound, occluded, and calcium-bound P. Organic P was extracted sequentially using sodium bicarbonate, hydrochloric acid, microbial biomass, sodium hydroxide, and residual organic P. After incubation, maize plants were cropped to quantify dry matter yield and absorbed P. Application of dairy manure resulted in a significant increase in most of the organic P fractions, and application of triple superphosphate led to a significant increase in inorganic P fractions. Both fertilisers raised labile organic P fractions in the two soils. The major sinks of P in Hapludox were occluded and fulvic acid-associated P. In contrast, the major sink of P in Hapludult was iron-bound P. The available P levels were stable after application of dairy manure, and decreased with time when fertilised with triple superphosphate. In the Hapludox, the organic P fractions had a significant positive correlation with P uptake by plants. The results suggest that organic P mineralisation plays a more significant role in plant P uptake in the Hapludox soil and inorganic P forms are the main contributors to plant P uptake in the Hapludult soil.


PLoS ONE ◽  
2017 ◽  
Vol 12 (6) ◽  
pp. e0179275 ◽  
Author(s):  
Xinghua Li ◽  
Baona Wang ◽  
Tewu Yang ◽  
Duanwei Zhu ◽  
Zhongnan Nie ◽  
...  

2016 ◽  
Vol 96 (2) ◽  
pp. 191-198 ◽  
Author(s):  
M.A. Ribey ◽  
I.P. O’Halloran

Environmental indices for soil P limit P applications when soil tests and risk of P losses exceed a given threshold. Producers’ reluctance to reduce P inputs often stem from concerns regarding reduced crop production and soil fertility. Our objectives were to identify changes in soil P fractions after 4 yr of repeated manure or fertilizer P applications at rates ≤ crop removal by corn (Zea mays L.), and the impact of these applications on yields. Olsen P and soil P fractions extracted using a modified Hedley P fractionation procedure were measured. Corn yields were nonresponsive to P applications. After 4 yr, Olsen P was 16.6 and 24.6 mg kg−1 at the application rates of 0 and 33 kg P ha−1 yr−1, respectively, for the inorganic fertilizer treatment indicating that soil P drawdown was occurring. Only the most labile forms of Pi (resin and bicarbonate extractable) were affected by treatment, with greater values at higher P application rates. Adherence to Ontario’s P index recommendations for P applications at or below crop removal should not be a crop production concern. Furthermore, given the rate of soil labile P drawdown, routine soil testing (every 3–5 yr) would identify agronomically significant changes in soil test P before the crop yield is impacted.


2021 ◽  
Vol 62 (1) ◽  
Author(s):  
Chih-Yu Chiu ◽  
Ian Baillie ◽  
Shih-Hao Jien ◽  
Liam Hallett ◽  
Stephen Hallett

Abstract Background Phosphorus (P) is the limiting nutrient in many mature tropical forests. The ecological significance of declining P stocks as soils age is exacerbated by much of the remaining P being progressively sequestered. However, the details of how and where P is sequestered during the ageing in tropical forest soils remains unclear. Results We examined the relationships between various forms of the Fe and Al sesquioxides and the Hedley fractions of P in soils of an incipient ferralitic chronosequence on an altitudinal series of gently sloping benches on Green Island, off the southeastern coast of Taiwan. These soils contain limited amounts of easily exchangeable P. Of the sesquioxide variables, only Fe and Al crystallinities increased significantly with bench altitude/soil age, indicating that the ferralisation trend is weak. The bulk of the soil P was in the NaOH and residual extractable fractions, and of low lability. The P fractions that correlated best with the sesquioxides were the organic components of the NaHCO3 and NaOH extracts. Conclusions The amorphous sesquioxides, Feo and Alo, were the forms that correlated best with the P fractions. A substantial proportion of the labile P appears to be organic and to be associated with Alo in organic-aluminium complexes. The progression of P sequestration appears to be slightly slower than the chemical and mineralogical indicators of ferralisation.


Author(s):  
Noura Ziadi ◽  
Xiangru Zhang ◽  
Bernard Gagnon ◽  
Eric Manirakiza

In recent decades, there has been a growing interest in the recycling of organic materials such as paper mill biosolids (PB) and biochar for use as soil amendments. However, the benefits of co-application of PB and biochar and its effects on soil P availability remain unknown. An incubation study was conducted on two acidic soils to assess the effect of two PB types (2.5% w/w) co-applied with three rates (0%, 2.5%, and 5% w/w) of pine (Pinus strobus L.) biochar on soil P fractions. An unfertilized control and a mineral NP fertilizer were used as a reference. Soil P fractions were determined by Hedley procedure after 2 and 16 weeks of incubation. Material fractionation indicated that the PB containing the highest total P and the lowest Al content had the highest proportion of labile P, whereas most P in the biochar was in a stable form. The incubation study revealed that the P-rich PB increased P availability in both soils to a level comparable to mineral fertilizer at the end of the incubation. The addition of biochar to PB, however, did not affect soil P availability, but the highest rate induced a conversion of P fixed to Al and Fe oxides towards recalcitrant forms, particularly in the sandy loam soil. We conclude that co-applying biochar and PB could be more beneficial than application biochar alone and soils amended with such a mixture would be expected to release part of their P slowly over a longer period of time.


Sign in / Sign up

Export Citation Format

Share Document